Baholash
15n^{2}-3n-1
Omil
15\left(n-\left(-\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)\left(n-\left(\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)
Baham ko'rish
Klipbordga nusxa olish
15n^{2}+2n-8-5n+7
15n^{2} ni olish uchun 11n^{2} va 4n^{2} ni birlashtirish.
15n^{2}-3n-8+7
-3n ni olish uchun 2n va -5n ni birlashtirish.
15n^{2}-3n-1
-1 olish uchun -8 va 7'ni qo'shing.
factor(15n^{2}+2n-8-5n+7)
15n^{2} ni olish uchun 11n^{2} va 4n^{2} ni birlashtirish.
factor(15n^{2}-3n-8+7)
-3n ni olish uchun 2n va -5n ni birlashtirish.
factor(15n^{2}-3n-1)
-1 olish uchun -8 va 7'ni qo'shing.
15n^{2}-3n-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 15\left(-1\right)}}{2\times 15}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-3\right)±\sqrt{9-4\times 15\left(-1\right)}}{2\times 15}
-3 kvadratini chiqarish.
n=\frac{-\left(-3\right)±\sqrt{9-60\left(-1\right)}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
n=\frac{-\left(-3\right)±\sqrt{9+60}}{2\times 15}
-60 ni -1 marotabaga ko'paytirish.
n=\frac{-\left(-3\right)±\sqrt{69}}{2\times 15}
9 ni 60 ga qo'shish.
n=\frac{3±\sqrt{69}}{2\times 15}
-3 ning teskarisi 3 ga teng.
n=\frac{3±\sqrt{69}}{30}
2 ni 15 marotabaga ko'paytirish.
n=\frac{\sqrt{69}+3}{30}
n=\frac{3±\sqrt{69}}{30} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{69} ga qo'shish.
n=\frac{\sqrt{69}}{30}+\frac{1}{10}
3+\sqrt{69} ni 30 ga bo'lish.
n=\frac{3-\sqrt{69}}{30}
n=\frac{3±\sqrt{69}}{30} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{69} ni ayirish.
n=-\frac{\sqrt{69}}{30}+\frac{1}{10}
3-\sqrt{69} ni 30 ga bo'lish.
15n^{2}-3n-1=15\left(n-\left(\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)\left(n-\left(-\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1}{10}+\frac{\sqrt{69}}{30} ga va x_{2} uchun \frac{1}{10}-\frac{\sqrt{69}}{30} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}