Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

10000+\left(x+100\right)^{2}=\left(2x+100\right)^{2}
2 daraja ko‘rsatkichini 100 ga hisoblang va 10000 ni qiymatni oling.
10000+x^{2}+200x+10000=\left(2x+100\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+100\right)^{2} kengaytirilishi uchun ishlating.
20000+x^{2}+200x=\left(2x+100\right)^{2}
20000 olish uchun 10000 va 10000'ni qo'shing.
20000+x^{2}+200x=4x^{2}+400x+10000
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+100\right)^{2} kengaytirilishi uchun ishlating.
20000+x^{2}+200x-4x^{2}=400x+10000
Ikkala tarafdan 4x^{2} ni ayirish.
20000-3x^{2}+200x=400x+10000
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
20000-3x^{2}+200x-400x=10000
Ikkala tarafdan 400x ni ayirish.
20000-3x^{2}-200x=10000
-200x ni olish uchun 200x va -400x ni birlashtirish.
20000-3x^{2}-200x-10000=0
Ikkala tarafdan 10000 ni ayirish.
10000-3x^{2}-200x=0
10000 olish uchun 20000 dan 10000 ni ayirish.
-3x^{2}-200x+10000=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-200 ab=-3\times 10000=-30000
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -3x^{2}+ax+bx+10000 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-30000 2,-15000 3,-10000 4,-7500 5,-6000 6,-5000 8,-3750 10,-3000 12,-2500 15,-2000 16,-1875 20,-1500 24,-1250 25,-1200 30,-1000 40,-750 48,-625 50,-600 60,-500 75,-400 80,-375 100,-300 120,-250 125,-240 150,-200
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -30000-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-30000=-29999 2-15000=-14998 3-10000=-9997 4-7500=-7496 5-6000=-5995 6-5000=-4994 8-3750=-3742 10-3000=-2990 12-2500=-2488 15-2000=-1985 16-1875=-1859 20-1500=-1480 24-1250=-1226 25-1200=-1175 30-1000=-970 40-750=-710 48-625=-577 50-600=-550 60-500=-440 75-400=-325 80-375=-295 100-300=-200 120-250=-130 125-240=-115 150-200=-50
Har bir juftlik yigʻindisini hisoblang.
a=100 b=-300
Yechim – -200 yigʻindisini beruvchi juftlik.
\left(-3x^{2}+100x\right)+\left(-300x+10000\right)
-3x^{2}-200x+10000 ni \left(-3x^{2}+100x\right)+\left(-300x+10000\right) sifatida qaytadan yozish.
-x\left(3x-100\right)-100\left(3x-100\right)
Birinchi guruhda -x ni va ikkinchi guruhda -100 ni faktordan chiqaring.
\left(3x-100\right)\left(-x-100\right)
Distributiv funktsiyasidan foydalangan holda 3x-100 umumiy terminini chiqaring.
x=\frac{100}{3} x=-100
Tenglamani yechish uchun 3x-100=0 va -x-100=0 ni yeching.
10000+\left(x+100\right)^{2}=\left(2x+100\right)^{2}
2 daraja ko‘rsatkichini 100 ga hisoblang va 10000 ni qiymatni oling.
10000+x^{2}+200x+10000=\left(2x+100\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+100\right)^{2} kengaytirilishi uchun ishlating.
20000+x^{2}+200x=\left(2x+100\right)^{2}
20000 olish uchun 10000 va 10000'ni qo'shing.
20000+x^{2}+200x=4x^{2}+400x+10000
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+100\right)^{2} kengaytirilishi uchun ishlating.
20000+x^{2}+200x-4x^{2}=400x+10000
Ikkala tarafdan 4x^{2} ni ayirish.
20000-3x^{2}+200x=400x+10000
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
20000-3x^{2}+200x-400x=10000
Ikkala tarafdan 400x ni ayirish.
20000-3x^{2}-200x=10000
-200x ni olish uchun 200x va -400x ni birlashtirish.
20000-3x^{2}-200x-10000=0
Ikkala tarafdan 10000 ni ayirish.
10000-3x^{2}-200x=0
10000 olish uchun 20000 dan 10000 ni ayirish.
-3x^{2}-200x+10000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-3\right)\times 10000}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -200 ni b va 10000 ni c bilan almashtiring.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-3\right)\times 10000}}{2\left(-3\right)}
-200 kvadratini chiqarish.
x=\frac{-\left(-200\right)±\sqrt{40000+12\times 10000}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-200\right)±\sqrt{40000+120000}}{2\left(-3\right)}
12 ni 10000 marotabaga ko'paytirish.
x=\frac{-\left(-200\right)±\sqrt{160000}}{2\left(-3\right)}
40000 ni 120000 ga qo'shish.
x=\frac{-\left(-200\right)±400}{2\left(-3\right)}
160000 ning kvadrat ildizini chiqarish.
x=\frac{200±400}{2\left(-3\right)}
-200 ning teskarisi 200 ga teng.
x=\frac{200±400}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{600}{-6}
x=\frac{200±400}{-6} tenglamasini yeching, bunda ± musbat. 200 ni 400 ga qo'shish.
x=-100
600 ni -6 ga bo'lish.
x=-\frac{200}{-6}
x=\frac{200±400}{-6} tenglamasini yeching, bunda ± manfiy. 200 dan 400 ni ayirish.
x=\frac{100}{3}
\frac{-200}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-100 x=\frac{100}{3}
Tenglama yechildi.
10000+\left(x+100\right)^{2}=\left(2x+100\right)^{2}
2 daraja ko‘rsatkichini 100 ga hisoblang va 10000 ni qiymatni oling.
10000+x^{2}+200x+10000=\left(2x+100\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+100\right)^{2} kengaytirilishi uchun ishlating.
20000+x^{2}+200x=\left(2x+100\right)^{2}
20000 olish uchun 10000 va 10000'ni qo'shing.
20000+x^{2}+200x=4x^{2}+400x+10000
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+100\right)^{2} kengaytirilishi uchun ishlating.
20000+x^{2}+200x-4x^{2}=400x+10000
Ikkala tarafdan 4x^{2} ni ayirish.
20000-3x^{2}+200x=400x+10000
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
20000-3x^{2}+200x-400x=10000
Ikkala tarafdan 400x ni ayirish.
20000-3x^{2}-200x=10000
-200x ni olish uchun 200x va -400x ni birlashtirish.
-3x^{2}-200x=10000-20000
Ikkala tarafdan 20000 ni ayirish.
-3x^{2}-200x=-10000
-10000 olish uchun 10000 dan 20000 ni ayirish.
\frac{-3x^{2}-200x}{-3}=-\frac{10000}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{200}{-3}\right)x=-\frac{10000}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{200}{3}x=-\frac{10000}{-3}
-200 ni -3 ga bo'lish.
x^{2}+\frac{200}{3}x=\frac{10000}{3}
-10000 ni -3 ga bo'lish.
x^{2}+\frac{200}{3}x+\left(\frac{100}{3}\right)^{2}=\frac{10000}{3}+\left(\frac{100}{3}\right)^{2}
\frac{200}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{100}{3} olish uchun. Keyin, \frac{100}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{10000}{3}+\frac{10000}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{100}{3} kvadratini chiqarish.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{40000}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10000}{3} ni \frac{10000}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{100}{3}\right)^{2}=\frac{40000}{9}
x^{2}+\frac{200}{3}x+\frac{10000}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{100}{3}\right)^{2}}=\sqrt{\frac{40000}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{100}{3}=\frac{200}{3} x+\frac{100}{3}=-\frac{200}{3}
Qisqartirish.
x=\frac{100}{3} x=-100
Tenglamaning ikkala tarafidan \frac{100}{3} ni ayirish.