Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

20000+100x-x^{2}=20000
100+x ga 200-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
20000+100x-x^{2}-20000=0
Ikkala tarafdan 20000 ni ayirish.
100x-x^{2}=0
0 olish uchun 20000 dan 20000 ni ayirish.
-x^{2}+100x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{100^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 100 ni b va 0 ni c bilan almashtiring.
x=\frac{-100±100}{2\left(-1\right)}
100^{2} ning kvadrat ildizini chiqarish.
x=\frac{-100±100}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{0}{-2}
x=\frac{-100±100}{-2} tenglamasini yeching, bunda ± musbat. -100 ni 100 ga qo'shish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{200}{-2}
x=\frac{-100±100}{-2} tenglamasini yeching, bunda ± manfiy. -100 dan 100 ni ayirish.
x=100
-200 ni -2 ga bo'lish.
x=0 x=100
Tenglama yechildi.
20000+100x-x^{2}=20000
100+x ga 200-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
100x-x^{2}=20000-20000
Ikkala tarafdan 20000 ni ayirish.
100x-x^{2}=0
0 olish uchun 20000 dan 20000 ni ayirish.
-x^{2}+100x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+100x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{100}{-1}x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-100x=\frac{0}{-1}
100 ni -1 ga bo'lish.
x^{2}-100x=0
0 ni -1 ga bo'lish.
x^{2}-100x+\left(-50\right)^{2}=\left(-50\right)^{2}
-100 ni bo‘lish, x shartining koeffitsienti, 2 ga -50 olish uchun. Keyin, -50 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-100x+2500=2500
-50 kvadratini chiqarish.
\left(x-50\right)^{2}=2500
x^{2}-100x+2500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2500}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-50=50 x-50=-50
Qisqartirish.
x=100 x=0
50 ni tenglamaning ikkala tarafiga qo'shish.