x uchun yechish
x=\sqrt{1001}+25\approx 56,638584039
x=25-\sqrt{1001}\approx -6,638584039
Grafik
Baham ko'rish
Klipbordga nusxa olish
6000+500x-10x^{2}=2240
100+10x ga 60-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6000+500x-10x^{2}-2240=0
Ikkala tarafdan 2240 ni ayirish.
3760+500x-10x^{2}=0
3760 olish uchun 6000 dan 2240 ni ayirish.
-10x^{2}+500x+3760=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-500±\sqrt{500^{2}-4\left(-10\right)\times 3760}}{2\left(-10\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -10 ni a, 500 ni b va 3760 ni c bilan almashtiring.
x=\frac{-500±\sqrt{250000-4\left(-10\right)\times 3760}}{2\left(-10\right)}
500 kvadratini chiqarish.
x=\frac{-500±\sqrt{250000+40\times 3760}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-500±\sqrt{250000+150400}}{2\left(-10\right)}
40 ni 3760 marotabaga ko'paytirish.
x=\frac{-500±\sqrt{400400}}{2\left(-10\right)}
250000 ni 150400 ga qo'shish.
x=\frac{-500±20\sqrt{1001}}{2\left(-10\right)}
400400 ning kvadrat ildizini chiqarish.
x=\frac{-500±20\sqrt{1001}}{-20}
2 ni -10 marotabaga ko'paytirish.
x=\frac{20\sqrt{1001}-500}{-20}
x=\frac{-500±20\sqrt{1001}}{-20} tenglamasini yeching, bunda ± musbat. -500 ni 20\sqrt{1001} ga qo'shish.
x=25-\sqrt{1001}
-500+20\sqrt{1001} ni -20 ga bo'lish.
x=\frac{-20\sqrt{1001}-500}{-20}
x=\frac{-500±20\sqrt{1001}}{-20} tenglamasini yeching, bunda ± manfiy. -500 dan 20\sqrt{1001} ni ayirish.
x=\sqrt{1001}+25
-500-20\sqrt{1001} ni -20 ga bo'lish.
x=25-\sqrt{1001} x=\sqrt{1001}+25
Tenglama yechildi.
6000+500x-10x^{2}=2240
100+10x ga 60-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
500x-10x^{2}=2240-6000
Ikkala tarafdan 6000 ni ayirish.
500x-10x^{2}=-3760
-3760 olish uchun 2240 dan 6000 ni ayirish.
-10x^{2}+500x=-3760
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-10x^{2}+500x}{-10}=-\frac{3760}{-10}
Ikki tarafini -10 ga bo‘ling.
x^{2}+\frac{500}{-10}x=-\frac{3760}{-10}
-10 ga bo'lish -10 ga ko'paytirishni bekor qiladi.
x^{2}-50x=-\frac{3760}{-10}
500 ni -10 ga bo'lish.
x^{2}-50x=376
-3760 ni -10 ga bo'lish.
x^{2}-50x+\left(-25\right)^{2}=376+\left(-25\right)^{2}
-50 ni bo‘lish, x shartining koeffitsienti, 2 ga -25 olish uchun. Keyin, -25 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-50x+625=376+625
-25 kvadratini chiqarish.
x^{2}-50x+625=1001
376 ni 625 ga qo'shish.
\left(x-25\right)^{2}=1001
x^{2}-50x+625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-25\right)^{2}}=\sqrt{1001}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-25=\sqrt{1001} x-25=-\sqrt{1001}
Qisqartirish.
x=\sqrt{1001}+25 x=25-\sqrt{1001}
25 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}