Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

80+12x-2x^{2}=90
10-x ga 8+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
80+12x-2x^{2}-90=0
Ikkala tarafdan 90 ni ayirish.
-10+12x-2x^{2}=0
-10 olish uchun 80 dan 90 ni ayirish.
-2x^{2}+12x-10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-10\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 12 ni b va -10 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\left(-2\right)\left(-10\right)}}{2\left(-2\right)}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144+8\left(-10\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144-80}}{2\left(-2\right)}
8 ni -10 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{64}}{2\left(-2\right)}
144 ni -80 ga qo'shish.
x=\frac{-12±8}{2\left(-2\right)}
64 ning kvadrat ildizini chiqarish.
x=\frac{-12±8}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{4}{-4}
x=\frac{-12±8}{-4} tenglamasini yeching, bunda ± musbat. -12 ni 8 ga qo'shish.
x=1
-4 ni -4 ga bo'lish.
x=-\frac{20}{-4}
x=\frac{-12±8}{-4} tenglamasini yeching, bunda ± manfiy. -12 dan 8 ni ayirish.
x=5
-20 ni -4 ga bo'lish.
x=1 x=5
Tenglama yechildi.
80+12x-2x^{2}=90
10-x ga 8+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
12x-2x^{2}=90-80
Ikkala tarafdan 80 ni ayirish.
12x-2x^{2}=10
10 olish uchun 90 dan 80 ni ayirish.
-2x^{2}+12x=10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+12x}{-2}=\frac{10}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{12}{-2}x=\frac{10}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-6x=\frac{10}{-2}
12 ni -2 ga bo'lish.
x^{2}-6x=-5
10 ni -2 ga bo'lish.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=-5+9
-3 kvadratini chiqarish.
x^{2}-6x+9=4
-5 ni 9 ga qo'shish.
\left(x-3\right)^{2}=4
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=2 x-3=-2
Qisqartirish.
x=5 x=1
3 ni tenglamaning ikkala tarafiga qo'shish.