x uchun yechish
x=30\sqrt{151}+360\approx 728,646171823
x=360-30\sqrt{151}\approx -8,646171823
Grafik
Baham ko'rish
Klipbordga nusxa olish
7300+720x-x^{2}=1000
10+x ga 730-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7300+720x-x^{2}-1000=0
Ikkala tarafdan 1000 ni ayirish.
6300+720x-x^{2}=0
6300 olish uchun 7300 dan 1000 ni ayirish.
-x^{2}+720x+6300=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-720±\sqrt{720^{2}-4\left(-1\right)\times 6300}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 720 ni b va 6300 ni c bilan almashtiring.
x=\frac{-720±\sqrt{518400-4\left(-1\right)\times 6300}}{2\left(-1\right)}
720 kvadratini chiqarish.
x=\frac{-720±\sqrt{518400+4\times 6300}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-720±\sqrt{518400+25200}}{2\left(-1\right)}
4 ni 6300 marotabaga ko'paytirish.
x=\frac{-720±\sqrt{543600}}{2\left(-1\right)}
518400 ni 25200 ga qo'shish.
x=\frac{-720±60\sqrt{151}}{2\left(-1\right)}
543600 ning kvadrat ildizini chiqarish.
x=\frac{-720±60\sqrt{151}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{60\sqrt{151}-720}{-2}
x=\frac{-720±60\sqrt{151}}{-2} tenglamasini yeching, bunda ± musbat. -720 ni 60\sqrt{151} ga qo'shish.
x=360-30\sqrt{151}
-720+60\sqrt{151} ni -2 ga bo'lish.
x=\frac{-60\sqrt{151}-720}{-2}
x=\frac{-720±60\sqrt{151}}{-2} tenglamasini yeching, bunda ± manfiy. -720 dan 60\sqrt{151} ni ayirish.
x=30\sqrt{151}+360
-720-60\sqrt{151} ni -2 ga bo'lish.
x=360-30\sqrt{151} x=30\sqrt{151}+360
Tenglama yechildi.
7300+720x-x^{2}=1000
10+x ga 730-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
720x-x^{2}=1000-7300
Ikkala tarafdan 7300 ni ayirish.
720x-x^{2}=-6300
-6300 olish uchun 1000 dan 7300 ni ayirish.
-x^{2}+720x=-6300
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+720x}{-1}=-\frac{6300}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{720}{-1}x=-\frac{6300}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-720x=-\frac{6300}{-1}
720 ni -1 ga bo'lish.
x^{2}-720x=6300
-6300 ni -1 ga bo'lish.
x^{2}-720x+\left(-360\right)^{2}=6300+\left(-360\right)^{2}
-720 ni bo‘lish, x shartining koeffitsienti, 2 ga -360 olish uchun. Keyin, -360 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-720x+129600=6300+129600
-360 kvadratini chiqarish.
x^{2}-720x+129600=135900
6300 ni 129600 ga qo'shish.
\left(x-360\right)^{2}=135900
x^{2}-720x+129600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-360\right)^{2}}=\sqrt{135900}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-360=30\sqrt{151} x-360=-30\sqrt{151}
Qisqartirish.
x=30\sqrt{151}+360 x=360-30\sqrt{151}
360 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}