Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

144-x^{2}=108
Hisoblang: \left(12+x\right)\left(12-x\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 12 kvadratini chiqarish.
-x^{2}=108-144
Ikkala tarafdan 144 ni ayirish.
-x^{2}=-36
-36 olish uchun 108 dan 144 ni ayirish.
x^{2}=\frac{-36}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}=36
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-36}{-1} kasrini 36 ga soddalashtirish mumkin.
x=6 x=-6
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
144-x^{2}=108
Hisoblang: \left(12+x\right)\left(12-x\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 12 kvadratini chiqarish.
144-x^{2}-108=0
Ikkala tarafdan 108 ni ayirish.
36-x^{2}=0
36 olish uchun 144 dan 108 ni ayirish.
-x^{2}+36=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 36}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 0 ni b va 36 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-1\right)\times 36}}{2\left(-1\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\times 36}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{0±\sqrt{144}}{2\left(-1\right)}
4 ni 36 marotabaga ko'paytirish.
x=\frac{0±12}{2\left(-1\right)}
144 ning kvadrat ildizini chiqarish.
x=\frac{0±12}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-6
x=\frac{0±12}{-2} tenglamasini yeching, bunda ± musbat. 12 ni -2 ga bo'lish.
x=6
x=\frac{0±12}{-2} tenglamasini yeching, bunda ± manfiy. -12 ni -2 ga bo'lish.
x=-6 x=6
Tenglama yechildi.