y uchun yechish
y=\frac{1}{2}=0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
1-4y+4y^{2}=\left(2y-1\right)\left(2y+7\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-2y\right)^{2} kengaytirilishi uchun ishlating.
1-4y+4y^{2}=4y^{2}+12y-7
2y-1 ga 2y+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
1-4y+4y^{2}-4y^{2}=12y-7
Ikkala tarafdan 4y^{2} ni ayirish.
1-4y=12y-7
0 ni olish uchun 4y^{2} va -4y^{2} ni birlashtirish.
1-4y-12y=-7
Ikkala tarafdan 12y ni ayirish.
1-16y=-7
-16y ni olish uchun -4y va -12y ni birlashtirish.
-16y=-7-1
Ikkala tarafdan 1 ni ayirish.
-16y=-8
-8 olish uchun -7 dan 1 ni ayirish.
y=\frac{-8}{-16}
Ikki tarafini -16 ga bo‘ling.
y=\frac{1}{2}
\frac{-8}{-16} ulushini -8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}