Baholash
\frac{295}{42}\approx 7,023809524
Omil
\frac{5 \cdot 59}{2 \cdot 3 \cdot 7} = 7\frac{1}{42} = 7,023809523809524
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{7}{7}-\frac{5}{7}\right)\left(\frac{3-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
1 ni \frac{7}{7} kasrga o‘giring.
\frac{7-5}{7}\left(\frac{3-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
\frac{7}{7} va \frac{5}{7} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{7}\left(\frac{3-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
2 olish uchun 7 dan 5 ni ayirish.
\frac{2}{7}\left(\frac{\frac{21}{7}-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
3 ni \frac{21}{7} kasrga o‘giring.
\frac{2}{7}\left(\frac{\frac{21-6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
\frac{21}{7} va \frac{6}{7} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{7}\left(\frac{\frac{15}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
15 olish uchun 21 dan 6 ni ayirish.
\frac{2}{7}\left(\frac{\frac{30}{14}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
7 va 14 ning eng kichik umumiy karralisi 14 ga teng. \frac{15}{7} va \frac{5}{14} ni 14 maxraj bilan kasrlarga aylantirib oling.
\frac{2}{7}\left(\frac{\frac{30-5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
\frac{30}{14} va \frac{5}{14} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
25 olish uchun 30 dan 5 ni ayirish.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{5}{6}-\frac{2}{6}-\frac{3}{7}}-\frac{5}{12}\right)
6 va 3 ning eng kichik umumiy karralisi 6 ga teng. \frac{5}{6} va \frac{1}{3} ni 6 maxraj bilan kasrlarga aylantirib oling.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{5-2}{6}-\frac{3}{7}}-\frac{5}{12}\right)
\frac{5}{6} va \frac{2}{6} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{3}{6}-\frac{3}{7}}-\frac{5}{12}\right)
3 olish uchun 5 dan 2 ni ayirish.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{1}{2}-\frac{3}{7}}-\frac{5}{12}\right)
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{7}{14}-\frac{6}{14}}-\frac{5}{12}\right)
2 va 7 ning eng kichik umumiy karralisi 14 ga teng. \frac{1}{2} va \frac{3}{7} ni 14 maxraj bilan kasrlarga aylantirib oling.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{7-6}{14}}-\frac{5}{12}\right)
\frac{7}{14} va \frac{6}{14} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{1}{14}}-\frac{5}{12}\right)
1 olish uchun 7 dan 6 ni ayirish.
\frac{2}{7}\left(\frac{25}{14}\times 14-\frac{5}{12}\right)
\frac{25}{14} ni \frac{1}{14} ga bo'lish \frac{25}{14} ga k'paytirish \frac{1}{14} ga qaytarish.
\frac{2}{7}\left(25-\frac{5}{12}\right)
14 va 14 ni qisqartiring.
\frac{2}{7}\left(\frac{300}{12}-\frac{5}{12}\right)
25 ni \frac{300}{12} kasrga o‘giring.
\frac{2}{7}\times \frac{300-5}{12}
\frac{300}{12} va \frac{5}{12} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{7}\times \frac{295}{12}
295 olish uchun 300 dan 5 ni ayirish.
\frac{2\times 295}{7\times 12}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2}{7} ni \frac{295}{12} ga ko‘paytiring.
\frac{590}{84}
\frac{2\times 295}{7\times 12} kasridagi ko‘paytirishlarni bajaring.
\frac{295}{42}
\frac{590}{84} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}