Baholash
\frac{65}{2}-\frac{45}{y}
Kengaytirish
\frac{65}{2}-\frac{45}{y}
Grafik
Viktorina
Polynomial
5xshash muammolar:
( 1 - \frac { 1 } { y } - \frac { 10 } { 36 } ) \div \frac { 1 } { 45 }
Baham ko'rish
Klipbordga nusxa olish
\frac{1-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
\frac{10}{36} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\frac{18}{18}-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
1 ni \frac{18}{18} kasrga o‘giring.
\frac{\frac{18-5}{18}-\frac{1}{y}}{\frac{1}{45}}
\frac{18}{18} va \frac{5}{18} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{13}{18}-\frac{1}{y}}{\frac{1}{45}}
13 olish uchun 18 dan 5 ni ayirish.
\frac{\frac{13y}{18y}-\frac{18}{18y}}{\frac{1}{45}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 18 va y ning eng kichik umumiy karralisi 18y. \frac{13}{18} ni \frac{y}{y} marotabaga ko'paytirish. \frac{1}{y} ni \frac{18}{18} marotabaga ko'paytirish.
\frac{\frac{13y-18}{18y}}{\frac{1}{45}}
\frac{13y}{18y} va \frac{18}{18y} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\left(13y-18\right)\times 45}{18y}
\frac{13y-18}{18y} ni \frac{1}{45} ga bo'lish \frac{13y-18}{18y} ga k'paytirish \frac{1}{45} ga qaytarish.
\frac{5\left(13y-18\right)}{2y}
Surat va maxrajdagi ikkala 9 ni qisqartiring.
\frac{65y-90}{2y}
5 ga 13y-18 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
\frac{10}{36} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\frac{18}{18}-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
1 ni \frac{18}{18} kasrga o‘giring.
\frac{\frac{18-5}{18}-\frac{1}{y}}{\frac{1}{45}}
\frac{18}{18} va \frac{5}{18} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{13}{18}-\frac{1}{y}}{\frac{1}{45}}
13 olish uchun 18 dan 5 ni ayirish.
\frac{\frac{13y}{18y}-\frac{18}{18y}}{\frac{1}{45}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 18 va y ning eng kichik umumiy karralisi 18y. \frac{13}{18} ni \frac{y}{y} marotabaga ko'paytirish. \frac{1}{y} ni \frac{18}{18} marotabaga ko'paytirish.
\frac{\frac{13y-18}{18y}}{\frac{1}{45}}
\frac{13y}{18y} va \frac{18}{18y} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\left(13y-18\right)\times 45}{18y}
\frac{13y-18}{18y} ni \frac{1}{45} ga bo'lish \frac{13y-18}{18y} ga k'paytirish \frac{1}{45} ga qaytarish.
\frac{5\left(13y-18\right)}{2y}
Surat va maxrajdagi ikkala 9 ni qisqartiring.
\frac{65y-90}{2y}
5 ga 13y-18 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}