Baholash
\frac{41a^{2}}{4}+\frac{a}{2}+\frac{1}{2}
Kengaytirish
\frac{41a^{2}}{4}+\frac{a}{2}+\frac{1}{2}
Baham ko'rish
Klipbordga nusxa olish
1-\frac{1}{2}a+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(a-\frac{1}{4}\right)^{2} kengaytirilishi uchun ishlating.
1-\frac{1}{2}a+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
8 ga a^{2}-\frac{1}{2}a+\frac{1}{16} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-\frac{9}{2}a+8a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
-\frac{9}{2}a ni olish uchun -\frac{1}{2}a va -4a ni birlashtirish.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\frac{3}{2} olish uchun 1 va \frac{1}{2}'ni qo'shing.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Hisoblang: \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
\left(\frac{3}{2}a\right)^{2} ni kengaytirish.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\frac{9}{4}a^{2}-1+5a
2 daraja ko‘rsatkichini \frac{3}{2} ga hisoblang va \frac{9}{4} ni qiymatni oling.
\frac{3}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}-1+5a
\frac{41}{4}a^{2} ni olish uchun 8a^{2} va \frac{9}{4}a^{2} ni birlashtirish.
\frac{1}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}+5a
\frac{1}{2} olish uchun \frac{3}{2} dan 1 ni ayirish.
\frac{1}{2}+\frac{1}{2}a+\frac{41}{4}a^{2}
\frac{1}{2}a ni olish uchun -\frac{9}{2}a va 5a ni birlashtirish.
1-\frac{1}{2}a+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(a-\frac{1}{4}\right)^{2} kengaytirilishi uchun ishlating.
1-\frac{1}{2}a+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
8 ga a^{2}-\frac{1}{2}a+\frac{1}{16} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-\frac{9}{2}a+8a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
-\frac{9}{2}a ni olish uchun -\frac{1}{2}a va -4a ni birlashtirish.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\frac{3}{2} olish uchun 1 va \frac{1}{2}'ni qo'shing.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Hisoblang: \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
\left(\frac{3}{2}a\right)^{2} ni kengaytirish.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\frac{9}{4}a^{2}-1+5a
2 daraja ko‘rsatkichini \frac{3}{2} ga hisoblang va \frac{9}{4} ni qiymatni oling.
\frac{3}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}-1+5a
\frac{41}{4}a^{2} ni olish uchun 8a^{2} va \frac{9}{4}a^{2} ni birlashtirish.
\frac{1}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}+5a
\frac{1}{2} olish uchun \frac{3}{2} dan 1 ni ayirish.
\frac{1}{2}+\frac{1}{2}a+\frac{41}{4}a^{2}
\frac{1}{2}a ni olish uchun -\frac{9}{2}a va 5a ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}