Asosiy tarkibga oʻtish
d uchun yechish (complex solution)
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
d uchun yechish
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Baham ko'rish

\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
1+y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
d+y^{2}d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
\arctan(y)-x ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\arctan(y)dy-xdy
\arctan(y)d-xd ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx-\arctan(y)dy=-xdy
Ikkala tarafdan \arctan(y)dy ni ayirish.
dx+y^{2}dx-\arctan(y)dy+xdy=0
xdy ni ikki tarafga qo’shing.
-dy\arctan(y)+dxy^{2}+dxy+dx=0
Shartlarni qayta saralash.
\left(-y\arctan(y)+xy^{2}+xy+x\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
d=0
0 ni -y\arctan(y)+xy^{2}+xy+x ga bo'lish.
\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
1+y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
d+y^{2}d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
\arctan(y)-x ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\arctan(y)dy-xdy
\arctan(y)d-xd ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx+xdy=\arctan(y)dy
xdy ni ikki tarafga qo’shing.
\left(d+y^{2}d+dy\right)x=\arctan(y)dy
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(dy^{2}+dy+d\right)x=dy\arctan(y)
Tenglama standart shaklda.
\frac{\left(dy^{2}+dy+d\right)x}{dy^{2}+dy+d}=\frac{dy\arctan(y)}{dy^{2}+dy+d}
Ikki tarafini d+y^{2}d+dy ga bo‘ling.
x=\frac{dy\arctan(y)}{dy^{2}+dy+d}
d+y^{2}d+dy ga bo'lish d+y^{2}d+dy ga ko'paytirishni bekor qiladi.
x=\frac{y\arctan(y)}{y^{2}+y+1}
\arctan(y)dy ni d+y^{2}d+dy ga bo'lish.
\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
1+y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
d+y^{2}d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
\arctan(y)-x ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\arctan(y)dy-xdy
\arctan(y)d-xd ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx-\arctan(y)dy=-xdy
Ikkala tarafdan \arctan(y)dy ni ayirish.
dx+y^{2}dx-\arctan(y)dy+xdy=0
xdy ni ikki tarafga qo’shing.
-dy\arctan(y)+dxy^{2}+dxy+dx=0
Shartlarni qayta saralash.
\left(-y\arctan(y)+xy^{2}+xy+x\right)d=0
d'ga ega bo'lgan barcha shartlarni birlashtirish.
d=0
0 ni -y\arctan(y)+xy^{2}+xy+x ga bo'lish.
\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
1+y^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
d+y^{2}d ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
\arctan(y)-x ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx=\arctan(y)dy-xdy
\arctan(y)d-xd ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
dx+y^{2}dx+xdy=\arctan(y)dy
xdy ni ikki tarafga qo’shing.
\left(d+y^{2}d+dy\right)x=\arctan(y)dy
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(dy^{2}+dy+d\right)x=dy\arctan(y)
Tenglama standart shaklda.
\frac{\left(dy^{2}+dy+d\right)x}{dy^{2}+dy+d}=\frac{dy\arctan(y)}{dy^{2}+dy+d}
Ikki tarafini d+y^{2}d+dy ga bo‘ling.
x=\frac{dy\arctan(y)}{dy^{2}+dy+d}
d+y^{2}d+dy ga bo'lish d+y^{2}d+dy ga ko'paytirishni bekor qiladi.
x=\frac{y\arctan(y)}{y^{2}+y+1}
\arctan(y)dy ni d+y^{2}d+dy ga bo'lish.