z uchun yechish
z=-3
Baham ko'rish
Klipbordga nusxa olish
\left(1+i\right)z=2-3i-5
Ikkala tarafdan 5 ni ayirish.
\left(1+i\right)z=2-5-3i
5 ni 2-3i dan mos real va mavhum qismlarni ayirish orqali ayiring.
\left(1+i\right)z=-3-3i
-3 olish uchun 2 dan 5 ni ayirish.
z=\frac{-3-3i}{1+i}
Ikki tarafini 1+i ga bo‘ling.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
\frac{-3-3i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)i^{2}}{2}
Binomlarni ko‘paytirgandek -3-3i va 1-i murakkab sonlarni ko‘paytiring.
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
z=\frac{-3+3i-3i-3}{2}
-3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
z=\frac{-3-3+\left(3-3\right)i}{2}
-3+3i-3i-3 ichida real va mavhum qismlarni birlashtiring.
z=\frac{-6}{2}
-3-3+\left(3-3\right)i ichida qo‘shishlarni bajaring.
z=-3
-3 ni olish uchun -6 ni 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}