Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-y^{2}-2y+7-7y^{2}
7 olish uchun 3 va 4'ni qo'shing.
-8y^{2}-2y+7
-8y^{2} ni olish uchun -y^{2} va -7y^{2} ni birlashtirish.
factor(-y^{2}-2y+7-7y^{2})
7 olish uchun 3 va 4'ni qo'shing.
factor(-8y^{2}-2y+7)
-8y^{2} ni olish uchun -y^{2} va -7y^{2} ni birlashtirish.
-8y^{2}-2y+7=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)\times 7}}{2\left(-8\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)\times 7}}{2\left(-8\right)}
-2 kvadratini chiqarish.
y=\frac{-\left(-2\right)±\sqrt{4+32\times 7}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
y=\frac{-\left(-2\right)±\sqrt{4+224}}{2\left(-8\right)}
32 ni 7 marotabaga ko'paytirish.
y=\frac{-\left(-2\right)±\sqrt{228}}{2\left(-8\right)}
4 ni 224 ga qo'shish.
y=\frac{-\left(-2\right)±2\sqrt{57}}{2\left(-8\right)}
228 ning kvadrat ildizini chiqarish.
y=\frac{2±2\sqrt{57}}{2\left(-8\right)}
-2 ning teskarisi 2 ga teng.
y=\frac{2±2\sqrt{57}}{-16}
2 ni -8 marotabaga ko'paytirish.
y=\frac{2\sqrt{57}+2}{-16}
y=\frac{2±2\sqrt{57}}{-16} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{57} ga qo'shish.
y=\frac{-\sqrt{57}-1}{8}
2+2\sqrt{57} ni -16 ga bo'lish.
y=\frac{2-2\sqrt{57}}{-16}
y=\frac{2±2\sqrt{57}}{-16} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{57} ni ayirish.
y=\frac{\sqrt{57}-1}{8}
2-2\sqrt{57} ni -16 ga bo'lish.
-8y^{2}-2y+7=-8\left(y-\frac{-\sqrt{57}-1}{8}\right)\left(y-\frac{\sqrt{57}-1}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1-\sqrt{57}}{8} ga va x_{2} uchun \frac{-1+\sqrt{57}}{8} ga bo‘ling.