Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-9c^{2}-2c+7+9
-2c ni olish uchun -5c va 3c ni birlashtirish.
-9c^{2}-2c+16
16 olish uchun 7 va 9'ni qo'shing.
factor(-9c^{2}-2c+7+9)
-2c ni olish uchun -5c va 3c ni birlashtirish.
factor(-9c^{2}-2c+16)
16 olish uchun 7 va 9'ni qo'shing.
-9c^{2}-2c+16=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
c=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)\times 16}}{2\left(-9\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
c=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)\times 16}}{2\left(-9\right)}
-2 kvadratini chiqarish.
c=\frac{-\left(-2\right)±\sqrt{4+36\times 16}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
c=\frac{-\left(-2\right)±\sqrt{4+576}}{2\left(-9\right)}
36 ni 16 marotabaga ko'paytirish.
c=\frac{-\left(-2\right)±\sqrt{580}}{2\left(-9\right)}
4 ni 576 ga qo'shish.
c=\frac{-\left(-2\right)±2\sqrt{145}}{2\left(-9\right)}
580 ning kvadrat ildizini chiqarish.
c=\frac{2±2\sqrt{145}}{2\left(-9\right)}
-2 ning teskarisi 2 ga teng.
c=\frac{2±2\sqrt{145}}{-18}
2 ni -9 marotabaga ko'paytirish.
c=\frac{2\sqrt{145}+2}{-18}
c=\frac{2±2\sqrt{145}}{-18} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{145} ga qo'shish.
c=\frac{-\sqrt{145}-1}{9}
2+2\sqrt{145} ni -18 ga bo'lish.
c=\frac{2-2\sqrt{145}}{-18}
c=\frac{2±2\sqrt{145}}{-18} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{145} ni ayirish.
c=\frac{\sqrt{145}-1}{9}
2-2\sqrt{145} ni -18 ga bo'lish.
-9c^{2}-2c+16=-9\left(c-\frac{-\sqrt{145}-1}{9}\right)\left(c-\frac{\sqrt{145}-1}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1-\sqrt{145}}{9} ga va x_{2} uchun \frac{-1+\sqrt{145}}{9} ga bo‘ling.