Baholash
16-2c-9c^{2}
Omil
-9\left(c-\frac{-\sqrt{145}-1}{9}\right)\left(c-\frac{\sqrt{145}-1}{9}\right)
Baham ko'rish
Klipbordga nusxa olish
-9c^{2}-2c+7+9
-2c ni olish uchun -5c va 3c ni birlashtirish.
-9c^{2}-2c+16
16 olish uchun 7 va 9'ni qo'shing.
factor(-9c^{2}-2c+7+9)
-2c ni olish uchun -5c va 3c ni birlashtirish.
factor(-9c^{2}-2c+16)
16 olish uchun 7 va 9'ni qo'shing.
-9c^{2}-2c+16=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
c=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)\times 16}}{2\left(-9\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
c=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)\times 16}}{2\left(-9\right)}
-2 kvadratini chiqarish.
c=\frac{-\left(-2\right)±\sqrt{4+36\times 16}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
c=\frac{-\left(-2\right)±\sqrt{4+576}}{2\left(-9\right)}
36 ni 16 marotabaga ko'paytirish.
c=\frac{-\left(-2\right)±\sqrt{580}}{2\left(-9\right)}
4 ni 576 ga qo'shish.
c=\frac{-\left(-2\right)±2\sqrt{145}}{2\left(-9\right)}
580 ning kvadrat ildizini chiqarish.
c=\frac{2±2\sqrt{145}}{2\left(-9\right)}
-2 ning teskarisi 2 ga teng.
c=\frac{2±2\sqrt{145}}{-18}
2 ni -9 marotabaga ko'paytirish.
c=\frac{2\sqrt{145}+2}{-18}
c=\frac{2±2\sqrt{145}}{-18} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{145} ga qo'shish.
c=\frac{-\sqrt{145}-1}{9}
2+2\sqrt{145} ni -18 ga bo'lish.
c=\frac{2-2\sqrt{145}}{-18}
c=\frac{2±2\sqrt{145}}{-18} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{145} ni ayirish.
c=\frac{\sqrt{145}-1}{9}
2-2\sqrt{145} ni -18 ga bo'lish.
-9c^{2}-2c+16=-9\left(c-\frac{-\sqrt{145}-1}{9}\right)\left(c-\frac{\sqrt{145}-1}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1-\sqrt{145}}{9} ga va x_{2} uchun \frac{-1+\sqrt{145}}{9} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}