Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(-2\right)^{2}x^{2}=\left(x+9\right)x
\left(-2x\right)^{2} ni kengaytirish.
4x^{2}=\left(x+9\right)x
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=x^{2}+9x
x+9 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-x^{2}=9x
Ikkala tarafdan x^{2} ni ayirish.
3x^{2}=9x
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}-9x=0
Ikkala tarafdan 9x ni ayirish.
x\left(3x-9\right)=0
x omili.
x=0 x=3
Tenglamani yechish uchun x=0 va 3x-9=0 ni yeching.
\left(-2\right)^{2}x^{2}=\left(x+9\right)x
\left(-2x\right)^{2} ni kengaytirish.
4x^{2}=\left(x+9\right)x
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=x^{2}+9x
x+9 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-x^{2}=9x
Ikkala tarafdan x^{2} ni ayirish.
3x^{2}=9x
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}-9x=0
Ikkala tarafdan 9x ni ayirish.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -9 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±9}{2\times 3}
\left(-9\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{9±9}{2\times 3}
-9 ning teskarisi 9 ga teng.
x=\frac{9±9}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{18}{6}
x=\frac{9±9}{6} tenglamasini yeching, bunda ± musbat. 9 ni 9 ga qo'shish.
x=3
18 ni 6 ga bo'lish.
x=\frac{0}{6}
x=\frac{9±9}{6} tenglamasini yeching, bunda ± manfiy. 9 dan 9 ni ayirish.
x=0
0 ni 6 ga bo'lish.
x=3 x=0
Tenglama yechildi.
\left(-2\right)^{2}x^{2}=\left(x+9\right)x
\left(-2x\right)^{2} ni kengaytirish.
4x^{2}=\left(x+9\right)x
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=x^{2}+9x
x+9 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-x^{2}=9x
Ikkala tarafdan x^{2} ni ayirish.
3x^{2}=9x
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}-9x=0
Ikkala tarafdan 9x ni ayirish.
\frac{3x^{2}-9x}{3}=\frac{0}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{9}{3}\right)x=\frac{0}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{0}{3}
-9 ni 3 ga bo'lish.
x^{2}-3x=0
0 ni 3 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
x=3 x=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.