Baholash
5x^{3}+15x^{2}-15x+4
x ga nisbatan hosilani topish
15\left(x^{2}+2x-1\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{3}+5x^{2}-5x+7+10x^{2}-10x-3
5x^{3} ni olish uchun -2x^{3} va 7x^{3} ni birlashtirish.
5x^{3}+15x^{2}-5x+7-10x-3
15x^{2} ni olish uchun 5x^{2} va 10x^{2} ni birlashtirish.
5x^{3}+15x^{2}-15x+7-3
-15x ni olish uchun -5x va -10x ni birlashtirish.
5x^{3}+15x^{2}-15x+4
4 olish uchun 7 dan 3 ni ayirish.
\frac{\mathrm{d}}{\mathrm{d}x}(5x^{3}+5x^{2}-5x+7+10x^{2}-10x-3)
5x^{3} ni olish uchun -2x^{3} va 7x^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(5x^{3}+15x^{2}-5x+7-10x-3)
15x^{2} ni olish uchun 5x^{2} va 10x^{2} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(5x^{3}+15x^{2}-15x+7-3)
-15x ni olish uchun -5x va -10x ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(5x^{3}+15x^{2}-15x+4)
4 olish uchun 7 dan 3 ni ayirish.
3\times 5x^{3-1}+2\times 15x^{2-1}-15x^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
15x^{3-1}+2\times 15x^{2-1}-15x^{1-1}
3 ni 5 marotabaga ko'paytirish.
15x^{2}+2\times 15x^{2-1}-15x^{1-1}
3 dan 1 ni ayirish.
15x^{2}+30x^{2-1}-15x^{1-1}
2 ni 15 marotabaga ko'paytirish.
15x^{2}+30x^{1}-15x^{1-1}
2 dan 1 ni ayirish.
15x^{2}+30x^{1}-15x^{0}
1 dan 1 ni ayirish.
15x^{2}+30x-15x^{0}
Har qanday t sharti uchun t^{1}=t.
15x^{2}+30x-15
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}