Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

18x^{2}-91x+45+\left(-9x-5\right)^{2}=0
-2x+9 ga -9x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
18x^{2}-91x+45+81x^{2}+90x+25=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-9x-5\right)^{2} kengaytirilishi uchun ishlating.
99x^{2}-91x+45+90x+25=0
99x^{2} ni olish uchun 18x^{2} va 81x^{2} ni birlashtirish.
99x^{2}-x+45+25=0
-x ni olish uchun -91x va 90x ni birlashtirish.
99x^{2}-x+70=0
70 olish uchun 45 va 25'ni qo'shing.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 99\times 70}}{2\times 99}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 99 ni a, -1 ni b va 70 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-396\times 70}}{2\times 99}
-4 ni 99 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-27720}}{2\times 99}
-396 ni 70 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-27719}}{2\times 99}
1 ni -27720 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{27719}i}{2\times 99}
-27719 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{27719}i}{2\times 99}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{27719}i}{198}
2 ni 99 marotabaga ko'paytirish.
x=\frac{1+\sqrt{27719}i}{198}
x=\frac{1±\sqrt{27719}i}{198} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{27719} ga qo'shish.
x=\frac{-\sqrt{27719}i+1}{198}
x=\frac{1±\sqrt{27719}i}{198} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{27719} ni ayirish.
x=\frac{1+\sqrt{27719}i}{198} x=\frac{-\sqrt{27719}i+1}{198}
Tenglama yechildi.
18x^{2}-91x+45+\left(-9x-5\right)^{2}=0
-2x+9 ga -9x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
18x^{2}-91x+45+81x^{2}+90x+25=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-9x-5\right)^{2} kengaytirilishi uchun ishlating.
99x^{2}-91x+45+90x+25=0
99x^{2} ni olish uchun 18x^{2} va 81x^{2} ni birlashtirish.
99x^{2}-x+45+25=0
-x ni olish uchun -91x va 90x ni birlashtirish.
99x^{2}-x+70=0
70 olish uchun 45 va 25'ni qo'shing.
99x^{2}-x=-70
Ikkala tarafdan 70 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{99x^{2}-x}{99}=-\frac{70}{99}
Ikki tarafini 99 ga bo‘ling.
x^{2}-\frac{1}{99}x=-\frac{70}{99}
99 ga bo'lish 99 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{99}x+\left(-\frac{1}{198}\right)^{2}=-\frac{70}{99}+\left(-\frac{1}{198}\right)^{2}
-\frac{1}{99} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{198} olish uchun. Keyin, -\frac{1}{198} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{99}x+\frac{1}{39204}=-\frac{70}{99}+\frac{1}{39204}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{198} kvadratini chiqarish.
x^{2}-\frac{1}{99}x+\frac{1}{39204}=-\frac{27719}{39204}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{70}{99} ni \frac{1}{39204} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{198}\right)^{2}=-\frac{27719}{39204}
x^{2}-\frac{1}{99}x+\frac{1}{39204} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{198}\right)^{2}}=\sqrt{-\frac{27719}{39204}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{198}=\frac{\sqrt{27719}i}{198} x-\frac{1}{198}=-\frac{\sqrt{27719}i}{198}
Qisqartirish.
x=\frac{1+\sqrt{27719}i}{198} x=\frac{-\sqrt{27719}i+1}{198}
\frac{1}{198} ni tenglamaning ikkala tarafiga qo'shish.