Baholash
2-3t-10t^{2}
Omil
-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
Baham ko'rish
Klipbordga nusxa olish
-10t^{2}-7t+5+4t-3
-10t^{2} ni olish uchun -2t^{2} va -8t^{2} ni birlashtirish.
-10t^{2}-3t+5-3
-3t ni olish uchun -7t va 4t ni birlashtirish.
-10t^{2}-3t+2
2 olish uchun 5 dan 3 ni ayirish.
factor(-10t^{2}-7t+5+4t-3)
-10t^{2} ni olish uchun -2t^{2} va -8t^{2} ni birlashtirish.
factor(-10t^{2}-3t+5-3)
-3t ni olish uchun -7t va 4t ni birlashtirish.
factor(-10t^{2}-3t+2)
2 olish uchun 5 dan 3 ni ayirish.
-10t^{2}-3t+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)\times 2}}{2\left(-10\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)\times 2}}{2\left(-10\right)}
-3 kvadratini chiqarish.
t=\frac{-\left(-3\right)±\sqrt{9+40\times 2}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
t=\frac{-\left(-3\right)±\sqrt{9+80}}{2\left(-10\right)}
40 ni 2 marotabaga ko'paytirish.
t=\frac{-\left(-3\right)±\sqrt{89}}{2\left(-10\right)}
9 ni 80 ga qo'shish.
t=\frac{3±\sqrt{89}}{2\left(-10\right)}
-3 ning teskarisi 3 ga teng.
t=\frac{3±\sqrt{89}}{-20}
2 ni -10 marotabaga ko'paytirish.
t=\frac{\sqrt{89}+3}{-20}
t=\frac{3±\sqrt{89}}{-20} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{89} ga qo'shish.
t=\frac{-\sqrt{89}-3}{20}
3+\sqrt{89} ni -20 ga bo'lish.
t=\frac{3-\sqrt{89}}{-20}
t=\frac{3±\sqrt{89}}{-20} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{89} ni ayirish.
t=\frac{\sqrt{89}-3}{20}
3-\sqrt{89} ni -20 ga bo'lish.
-10t^{2}-3t+2=-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-3-\sqrt{89}}{20} ga va x_{2} uchun \frac{-3+\sqrt{89}}{20} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}