Baholash
2
Omil
2
Baham ko'rish
Klipbordga nusxa olish
\left(-2\right)^{2}\times \frac{4}{9}+\left(0-0\right)^{2}\times \frac{3}{9}+\left(1-0\right)^{2}\times \frac{2}{9}
-2 olish uchun -2 dan 0 ni ayirish.
4\times \frac{4}{9}+\left(0-0\right)^{2}\times \frac{3}{9}+\left(1-0\right)^{2}\times \frac{2}{9}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
\frac{16}{9}+\left(0-0\right)^{2}\times \frac{3}{9}+\left(1-0\right)^{2}\times \frac{2}{9}
\frac{16}{9} hosil qilish uchun 4 va \frac{4}{9} ni ko'paytirish.
\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1-0\right)^{2}\times \frac{2}{9}
O‘zidan 0 ayirilsa 0 qoladi.
\frac{16}{9}+0\times \frac{3}{9}+\left(1-0\right)^{2}\times \frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\frac{16}{9}+0\times \frac{1}{3}+\left(1-0\right)^{2}\times \frac{2}{9}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{16}{9}+0+\left(1-0\right)^{2}\times \frac{2}{9}
0 hosil qilish uchun 0 va \frac{1}{3} ni ko'paytirish.
\frac{16}{9}+\left(1-0\right)^{2}\times \frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\frac{16}{9}+1^{2}\times \frac{2}{9}
1 olish uchun 1 dan 0 ni ayirish.
\frac{16}{9}+1\times \frac{2}{9}
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
\frac{16}{9}+\frac{2}{9}
\frac{2}{9} hosil qilish uchun 1 va \frac{2}{9} ni ko'paytirish.
2
2 olish uchun \frac{16}{9} va \frac{2}{9}'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}