Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(-18x^{4}\right)^{1}\times \frac{1}{6x^{3}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\left(-18\right)^{1}\left(x^{4}\right)^{1}\times \frac{1}{6}\times \frac{1}{x^{3}}
Ikki yoki undan ko'p raqam koʻpaytmasini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring va ularning koʻpaytmasini chiqaring.
\left(-18\right)^{1}\times \frac{1}{6}\left(x^{4}\right)^{1}\times \frac{1}{x^{3}}
Ko'paytirishning kommutativ xususiyatidan foydalanish.
\left(-18\right)^{1}\times \frac{1}{6}x^{4}x^{3\left(-1\right)}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
\left(-18\right)^{1}\times \frac{1}{6}x^{4}x^{-3}
3 ni -1 marotabaga ko'paytirish.
\left(-18\right)^{1}\times \frac{1}{6}x^{4-3}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\left(-18\right)^{1}\times \frac{1}{6}x^{1}
4 va -3 belgilarini qo'shish.
-18\times \frac{1}{6}x^{1}
-18 ni 1 daraja ko'rsatgichiga oshirish.
-3x^{1}
-18 ni \frac{1}{6} marotabaga ko'paytirish.
-3x
Har qanday t sharti uchun t^{1}=t.
\frac{\left(-18\right)^{1}x^{4}}{6^{1}x^{3}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{\left(-18\right)^{1}x^{4-3}}{6^{1}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\left(-18\right)^{1}x^{1}}{6^{1}}
4 dan 3 ni ayirish.
-3x^{1}
-18 ni 6 ga bo'lish.
-3x
Har qanday t sharti uchun t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{18}{6}\right)x^{4-3})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1})
Arifmetik hisobni amalga oshirish.
-3x^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-3x^{0}
Arifmetik hisobni amalga oshirish.
-3
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.