Baholash
144-i
Ashyoviy qism
144
Viktorina
Complex Number
5xshash muammolar:
( - 14 ) - i - [ ( - 2 ) \times 3 ] + ( - 5 ) ( - 6 ) 5 + 2
Baham ko'rish
Klipbordga nusxa olish
-14-i-\left(-6\right)-5\left(-6\right)\times 5+2
-6 hosil qilish uchun -2 va 3 ni ko'paytirish.
-14-i+6-5\left(-6\right)\times 5+2
-6 ning teskarisi 6 ga teng.
-14+6-i-5\left(-6\right)\times 5+2
-14-i va 6 sonlari ichida real va mavhum qismlarni birlashtiring.
-8-i-5\left(-6\right)\times 5+2
-14 ni 6 ga qo'shish.
-5\left(-6\right)\times 5-8+2-i
Real va mavhum qismlarni birlashtiring.
-5\left(-6\right)\times 5-6-i
-8 ni 2 ga qo'shish.
30\times 5-6-i
30 hosil qilish uchun -5 va -6 ni ko'paytirish.
150-6-i
150 hosil qilish uchun 30 va 5 ni ko'paytirish.
144-i
150 ni -6 ga qo'shish.
Re(-14-i-\left(-6\right)-5\left(-6\right)\times 5+2)
-6 hosil qilish uchun -2 va 3 ni ko'paytirish.
Re(-14-i+6-5\left(-6\right)\times 5+2)
-6 ning teskarisi 6 ga teng.
Re(-14+6-i-5\left(-6\right)\times 5+2)
-14-i va 6 sonlari ichida real va mavhum qismlarni birlashtiring.
Re(-8-i-5\left(-6\right)\times 5+2)
-14 ni 6 ga qo'shish.
Re(-5\left(-6\right)\times 5-8+2-i)
-8-i+2 ichida real va mavhum qismlarni birlashtiring.
Re(-5\left(-6\right)\times 5-6-i)
-8 ni 2 ga qo'shish.
Re(30\times 5-6-i)
30 hosil qilish uchun -5 va -6 ni ko'paytirish.
Re(150-6-i)
150 hosil qilish uchun 30 va 5 ni ko'paytirish.
Re(144-i)
150 ni -6 ga qo'shish.
144
144-i ning real qismi – 144.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}