y uchun yechish
y=176
y=446
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(0-0\times 1\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
\left(0-0\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
O‘zidan 0 ayirilsa 0 qoladi.
0+\left(200-y-\left(-115+4\right)\right)^{2}=18225
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
0+\left(200-y-\left(-111\right)\right)^{2}=18225
-111 olish uchun -115 va 4'ni qo'shing.
0+\left(200-y+111\right)^{2}=18225
-111 ning teskarisi 111 ga teng.
0+y^{2}-622y+96721=18225
200-y+111 kvadratini chiqarish.
96721+y^{2}-622y=18225
96721 olish uchun 0 va 96721'ni qo'shing.
96721+y^{2}-622y-18225=0
Ikkala tarafdan 18225 ni ayirish.
78496+y^{2}-622y=0
78496 olish uchun 96721 dan 18225 ni ayirish.
y^{2}-622y+78496=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-622\right)±\sqrt{\left(-622\right)^{2}-4\times 78496}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -622 ni b va 78496 ni c bilan almashtiring.
y=\frac{-\left(-622\right)±\sqrt{386884-4\times 78496}}{2}
-622 kvadratini chiqarish.
y=\frac{-\left(-622\right)±\sqrt{386884-313984}}{2}
-4 ni 78496 marotabaga ko'paytirish.
y=\frac{-\left(-622\right)±\sqrt{72900}}{2}
386884 ni -313984 ga qo'shish.
y=\frac{-\left(-622\right)±270}{2}
72900 ning kvadrat ildizini chiqarish.
y=\frac{622±270}{2}
-622 ning teskarisi 622 ga teng.
y=\frac{892}{2}
y=\frac{622±270}{2} tenglamasini yeching, bunda ± musbat. 622 ni 270 ga qo'shish.
y=446
892 ni 2 ga bo'lish.
y=\frac{352}{2}
y=\frac{622±270}{2} tenglamasini yeching, bunda ± manfiy. 622 dan 270 ni ayirish.
y=176
352 ni 2 ga bo'lish.
y=446 y=176
Tenglama yechildi.
\left(0-0\times 1\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
\left(0-0\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
O‘zidan 0 ayirilsa 0 qoladi.
0+\left(200-y-\left(-115+4\right)\right)^{2}=18225
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
0+\left(200-y-\left(-111\right)\right)^{2}=18225
-111 olish uchun -115 va 4'ni qo'shing.
0+\left(200-y+111\right)^{2}=18225
-111 ning teskarisi 111 ga teng.
0+y^{2}-622y+96721=18225
200-y+111 kvadratini chiqarish.
96721+y^{2}-622y=18225
96721 olish uchun 0 va 96721'ni qo'shing.
y^{2}-622y=18225-96721
Ikkala tarafdan 96721 ni ayirish.
y^{2}-622y=-78496
-78496 olish uchun 18225 dan 96721 ni ayirish.
y^{2}-622y+\left(-311\right)^{2}=-78496+\left(-311\right)^{2}
-622 ni bo‘lish, x shartining koeffitsienti, 2 ga -311 olish uchun. Keyin, -311 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-622y+96721=-78496+96721
-311 kvadratini chiqarish.
y^{2}-622y+96721=18225
-78496 ni 96721 ga qo'shish.
\left(y-311\right)^{2}=18225
y^{2}-622y+96721 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-311\right)^{2}}=\sqrt{18225}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-311=135 y-311=-135
Qisqartirish.
y=446 y=176
311 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}