Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

factor(2z^{2}+z-11)
2z^{2} ni olish uchun z^{2} va z^{2} ni birlashtirish.
2z^{2}+z-11=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
z=\frac{-1±\sqrt{1^{2}-4\times 2\left(-11\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-1±\sqrt{1-4\times 2\left(-11\right)}}{2\times 2}
1 kvadratini chiqarish.
z=\frac{-1±\sqrt{1-8\left(-11\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
z=\frac{-1±\sqrt{1+88}}{2\times 2}
-8 ni -11 marotabaga ko'paytirish.
z=\frac{-1±\sqrt{89}}{2\times 2}
1 ni 88 ga qo'shish.
z=\frac{-1±\sqrt{89}}{4}
2 ni 2 marotabaga ko'paytirish.
z=\frac{\sqrt{89}-1}{4}
z=\frac{-1±\sqrt{89}}{4} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{89} ga qo'shish.
z=\frac{-\sqrt{89}-1}{4}
z=\frac{-1±\sqrt{89}}{4} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{89} ni ayirish.
2z^{2}+z-11=2\left(z-\frac{\sqrt{89}-1}{4}\right)\left(z-\frac{-\sqrt{89}-1}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{89}}{4} ga va x_{2} uchun \frac{-1-\sqrt{89}}{4} ga bo‘ling.
2z^{2}+z-11
2z^{2} ni olish uchun z^{2} va z^{2} ni birlashtirish.