Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{x+2}\right)^{2}+2\sqrt{x+2}\sqrt{18-x}+\left(\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{x+2}+\sqrt{18-x}\right)^{2} kengaytirilishi uchun ishlating.
x+2+2\sqrt{x+2}\sqrt{18-x}+\left(\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
x+2+2\sqrt{x+2}\sqrt{18-x}+18-x=\left(\sqrt{10+13x}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{18-x} ga hisoblang va 18-x ni qiymatni oling.
x+20+2\sqrt{x+2}\sqrt{18-x}-x=\left(\sqrt{10+13x}\right)^{2}
20 olish uchun 2 va 18'ni qo'shing.
20+2\sqrt{x+2}\sqrt{18-x}=\left(\sqrt{10+13x}\right)^{2}
0 ni olish uchun x va -x ni birlashtirish.
20+2\sqrt{x+2}\sqrt{18-x}=10+13x
2 daraja ko‘rsatkichini \sqrt{10+13x} ga hisoblang va 10+13x ni qiymatni oling.
20+2\sqrt{x+2}\sqrt{18-x}-13x=10
Ikkala tarafdan 13x ni ayirish.
2\sqrt{x+2}\sqrt{18-x}-13x=10-20
Ikkala tarafdan 20 ni ayirish.
2\sqrt{x+2}\sqrt{18-x}-13x=-10
-10 olish uchun 10 dan 20 ni ayirish.
2\sqrt{x+2}\sqrt{18-x}=-10+13x
Tenglamaning ikkala tarafidan -13x ni ayirish.
\left(2\sqrt{x+2}\sqrt{18-x}\right)^{2}=\left(13x-10\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2^{2}\left(\sqrt{x+2}\right)^{2}\left(\sqrt{18-x}\right)^{2}=\left(13x-10\right)^{2}
\left(2\sqrt{x+2}\sqrt{18-x}\right)^{2} ni kengaytirish.
4\left(\sqrt{x+2}\right)^{2}\left(\sqrt{18-x}\right)^{2}=\left(13x-10\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\left(x+2\right)\left(\sqrt{18-x}\right)^{2}=\left(13x-10\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
4\left(x+2\right)\left(18-x\right)=\left(13x-10\right)^{2}
2 daraja ko‘rsatkichini \sqrt{18-x} ga hisoblang va 18-x ni qiymatni oling.
\left(4x+8\right)\left(18-x\right)=\left(13x-10\right)^{2}
4 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
64x-4x^{2}+144=\left(13x-10\right)^{2}
4x+8 ga 18-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
64x-4x^{2}+144=169x^{2}-260x+100
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(13x-10\right)^{2} kengaytirilishi uchun ishlating.
64x-4x^{2}+144-169x^{2}=-260x+100
Ikkala tarafdan 169x^{2} ni ayirish.
64x-173x^{2}+144=-260x+100
-173x^{2} ni olish uchun -4x^{2} va -169x^{2} ni birlashtirish.
64x-173x^{2}+144+260x=100
260x ni ikki tarafga qo’shing.
324x-173x^{2}+144=100
324x ni olish uchun 64x va 260x ni birlashtirish.
324x-173x^{2}+144-100=0
Ikkala tarafdan 100 ni ayirish.
324x-173x^{2}+44=0
44 olish uchun 144 dan 100 ni ayirish.
-173x^{2}+324x+44=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=324 ab=-173\times 44=-7612
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -173x^{2}+ax+bx+44 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,7612 -2,3806 -4,1903 -11,692 -22,346 -44,173
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -7612-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+7612=7611 -2+3806=3804 -4+1903=1899 -11+692=681 -22+346=324 -44+173=129
Har bir juftlik yigʻindisini hisoblang.
a=346 b=-22
Yechim – 324 yigʻindisini beruvchi juftlik.
\left(-173x^{2}+346x\right)+\left(-22x+44\right)
-173x^{2}+324x+44 ni \left(-173x^{2}+346x\right)+\left(-22x+44\right) sifatida qaytadan yozish.
173x\left(-x+2\right)+22\left(-x+2\right)
Birinchi guruhda 173x ni va ikkinchi guruhda 22 ni faktordan chiqaring.
\left(-x+2\right)\left(173x+22\right)
Distributiv funktsiyasidan foydalangan holda -x+2 umumiy terminini chiqaring.
x=2 x=-\frac{22}{173}
Tenglamani yechish uchun -x+2=0 va 173x+22=0 ni yeching.
\left(\sqrt{2+2}+\sqrt{18-2}\right)^{2}=\left(\sqrt{10+13\times 2}\right)^{2}
\left(\sqrt{x+2}+\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2} tenglamasida x uchun 2 ni almashtiring.
36=36
Qisqartirish. x=2 tenglamani qoniqtiradi.
\left(\sqrt{-\frac{22}{173}+2}+\sqrt{18-\left(-\frac{22}{173}\right)}\right)^{2}=\left(\sqrt{10+13\left(-\frac{22}{173}\right)}\right)^{2}
\left(\sqrt{x+2}+\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2} tenglamasida x uchun -\frac{22}{173} ni almashtiring.
\frac{5476}{173}=\frac{1444}{173}
Qisqartirish. x=-\frac{22}{173} qiymati bu tenglamani qoniqtirmaydi.
x=2
2\sqrt{18-x}\sqrt{x+2}=13x-10 tenglamasi noyob yechimga ega.