x uchun yechish
x = \frac{\sqrt{61} - 1}{2} \approx 3,405124838
x=\frac{-\sqrt{61}-1}{2}\approx -4,405124838
Grafik
Baham ko'rish
Klipbordga nusxa olish
x+16=\left(x+1\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+16} ga hisoblang va x+16 ni qiymatni oling.
x+16=x^{2}+2x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
x+16-x^{2}=2x+1
Ikkala tarafdan x^{2} ni ayirish.
x+16-x^{2}-2x=1
Ikkala tarafdan 2x ni ayirish.
-x+16-x^{2}=1
-x ni olish uchun x va -2x ni birlashtirish.
-x+16-x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
-x+15-x^{2}=0
15 olish uchun 16 dan 1 ni ayirish.
-x^{2}-x+15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 15}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va 15 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 15}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+60}}{2\left(-1\right)}
4 ni 15 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{61}}{2\left(-1\right)}
1 ni 60 ga qo'shish.
x=\frac{1±\sqrt{61}}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{61}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{61}+1}{-2}
x=\frac{1±\sqrt{61}}{-2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{61} ga qo'shish.
x=\frac{-\sqrt{61}-1}{2}
1+\sqrt{61} ni -2 ga bo'lish.
x=\frac{1-\sqrt{61}}{-2}
x=\frac{1±\sqrt{61}}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{61} ni ayirish.
x=\frac{\sqrt{61}-1}{2}
1-\sqrt{61} ni -2 ga bo'lish.
x=\frac{-\sqrt{61}-1}{2} x=\frac{\sqrt{61}-1}{2}
Tenglama yechildi.
x+16=\left(x+1\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+16} ga hisoblang va x+16 ni qiymatni oling.
x+16=x^{2}+2x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
x+16-x^{2}=2x+1
Ikkala tarafdan x^{2} ni ayirish.
x+16-x^{2}-2x=1
Ikkala tarafdan 2x ni ayirish.
-x+16-x^{2}=1
-x ni olish uchun x va -2x ni birlashtirish.
-x-x^{2}=1-16
Ikkala tarafdan 16 ni ayirish.
-x-x^{2}=-15
-15 olish uchun 1 dan 16 ni ayirish.
-x^{2}-x=-15
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-x}{-1}=-\frac{15}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{15}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{15}{-1}
-1 ni -1 ga bo'lish.
x^{2}+x=15
-15 ni -1 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=15+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=15+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{61}{4}
15 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{61}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{61}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{61}}{2} x+\frac{1}{2}=-\frac{\sqrt{61}}{2}
Qisqartirish.
x=\frac{\sqrt{61}-1}{2} x=\frac{-\sqrt{61}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}