b uchun yechish
b=\frac{9\sqrt{2}a}{2}+4a-27\sqrt{2}
a\geq 0
a uchun yechish
a=-\frac{\left(4\sqrt{2}-9\right)\left(\sqrt{2}b+54\right)}{49}
b\geq -27\sqrt{2}
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{8a}+\left(\sqrt{8a}\right)^{2}=54+b\sqrt{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(\sqrt{a}+\sqrt{8a}\right)^{2} kengaytirilishi uchun ishlating.
a+2\sqrt{a}\sqrt{8a}+\left(\sqrt{8a}\right)^{2}=54+b\sqrt{2}
2 daraja ko‘rsatkichini \sqrt{a} ga hisoblang va a ni qiymatni oling.
a+2\sqrt{a}\sqrt{8a}+8a=54+b\sqrt{2}
2 daraja ko‘rsatkichini \sqrt{8a} ga hisoblang va 8a ni qiymatni oling.
9a+2\sqrt{a}\sqrt{8a}=54+b\sqrt{2}
9a ni olish uchun a va 8a ni birlashtirish.
54+b\sqrt{2}=9a+2\sqrt{a}\sqrt{8a}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
b\sqrt{2}=9a+2\sqrt{a}\sqrt{8a}-54
Ikkala tarafdan 54 ni ayirish.
\sqrt{2}b=2\sqrt{a}\sqrt{8a}+9a-54
Tenglama standart shaklda.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{4\sqrt{2}a+9a-54}{\sqrt{2}}
Ikki tarafini \sqrt{2} ga bo‘ling.
b=\frac{4\sqrt{2}a+9a-54}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
b=\frac{\sqrt{2}\left(4\sqrt{2}a+9a-54\right)}{2}
9a+4a\sqrt{2}-54 ni \sqrt{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}