Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{8a}+\left(\sqrt{8a}\right)^{2}=54+b\sqrt{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(\sqrt{a}+\sqrt{8a}\right)^{2} kengaytirilishi uchun ishlating.
a+2\sqrt{a}\sqrt{8a}+\left(\sqrt{8a}\right)^{2}=54+b\sqrt{2}
2 daraja ko‘rsatkichini \sqrt{a} ga hisoblang va a ni qiymatni oling.
a+2\sqrt{a}\sqrt{8a}+8a=54+b\sqrt{2}
2 daraja ko‘rsatkichini \sqrt{8a} ga hisoblang va 8a ni qiymatni oling.
9a+2\sqrt{a}\sqrt{8a}=54+b\sqrt{2}
9a ni olish uchun a va 8a ni birlashtirish.
54+b\sqrt{2}=9a+2\sqrt{a}\sqrt{8a}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
b\sqrt{2}=9a+2\sqrt{a}\sqrt{8a}-54
Ikkala tarafdan 54 ni ayirish.
\sqrt{2}b=2\sqrt{a}\sqrt{8a}+9a-54
Tenglama standart shaklda.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{4\sqrt{2}a+9a-54}{\sqrt{2}}
Ikki tarafini \sqrt{2} ga bo‘ling.
b=\frac{4\sqrt{2}a+9a-54}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
b=\frac{\sqrt{2}\left(4\sqrt{2}a+9a-54\right)}{2}
9a+4a\sqrt{2}-54 ni \sqrt{2} ga bo'lish.