Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{7}+3\right)^{2} kengaytirilishi uchun ishlating.
7+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
\sqrt{7} kvadrati – 7.
16+6\sqrt{7}-\left(\sqrt{14}-\sqrt{2}\right)^{2}
16 olish uchun 7 va 9'ni qo'shing.
16+6\sqrt{7}-\left(\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{14}-\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
16+6\sqrt{7}-\left(14-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
\sqrt{14} kvadrati – 14.
16+6\sqrt{7}-\left(14-2\sqrt{2}\sqrt{7}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Faktor: 14=2\times 7. \sqrt{2\times 7} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{7} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
16+6\sqrt{7}-\left(14-2\times 2\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
16+6\sqrt{7}-\left(14-4\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
16+6\sqrt{7}-\left(14-4\sqrt{7}+2\right)
\sqrt{2} kvadrati – 2.
16+6\sqrt{7}-\left(16-4\sqrt{7}\right)
16 olish uchun 14 va 2'ni qo'shing.
16+6\sqrt{7}-16+4\sqrt{7}
16-4\sqrt{7} teskarisini topish uchun har birining teskarisini toping.
6\sqrt{7}+4\sqrt{7}
0 olish uchun 16 dan 16 ni ayirish.
10\sqrt{7}
10\sqrt{7} ni olish uchun 6\sqrt{7} va 4\sqrt{7} ni birlashtirish.
\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{7}+3\right)^{2} kengaytirilishi uchun ishlating.
7+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
\sqrt{7} kvadrati – 7.
16+6\sqrt{7}-\left(\sqrt{14}-\sqrt{2}\right)^{2}
16 olish uchun 7 va 9'ni qo'shing.
16+6\sqrt{7}-\left(\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{14}-\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
16+6\sqrt{7}-\left(14-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
\sqrt{14} kvadrati – 14.
16+6\sqrt{7}-\left(14-2\sqrt{2}\sqrt{7}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Faktor: 14=2\times 7. \sqrt{2\times 7} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{7} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
16+6\sqrt{7}-\left(14-2\times 2\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
16+6\sqrt{7}-\left(14-4\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
16+6\sqrt{7}-\left(14-4\sqrt{7}+2\right)
\sqrt{2} kvadrati – 2.
16+6\sqrt{7}-\left(16-4\sqrt{7}\right)
16 olish uchun 14 va 2'ni qo'shing.
16+6\sqrt{7}-16+4\sqrt{7}
16-4\sqrt{7} teskarisini topish uchun har birining teskarisini toping.
6\sqrt{7}+4\sqrt{7}
0 olish uchun 16 dan 16 ni ayirish.
10\sqrt{7}
10\sqrt{7} ni olish uchun 6\sqrt{7} va 4\sqrt{7} ni birlashtirish.