Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{6}-\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
\sqrt{6} kvadrati – 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Faktor: 6=2\times 3. \sqrt{2\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
6-4\sqrt{3}+2-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
\sqrt{2} kvadrati – 2.
8-4\sqrt{3}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
8 olish uchun 6 va 2'ni qo'shing.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} maxrajini \sqrt{6}-\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
\sqrt{6} kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4}
4 olish uchun 6 dan 2 ni ayirish.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4}
\left(\sqrt{6}-\sqrt{2}\right)^{2} hosil qilish uchun \sqrt{6}-\sqrt{2} va \sqrt{6}-\sqrt{2} ni ko'paytirish.
8-4\sqrt{3}-\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{6}-\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
8-4\sqrt{3}-\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
\sqrt{6} kvadrati – 6.
8-4\sqrt{3}-\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Faktor: 6=2\times 3. \sqrt{2\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
8-4\sqrt{3}-\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+2}{4}
\sqrt{2} kvadrati – 2.
8-4\sqrt{3}-\frac{8-4\sqrt{3}}{4}
8 olish uchun 6 va 2'ni qo'shing.
8-4\sqrt{3}-\left(2-\sqrt{3}\right)
2-\sqrt{3} natijani olish uchun 8-4\sqrt{3} ning har bir ifodasini 4 ga bo‘ling.
8-4\sqrt{3}-2+\sqrt{3}
2-\sqrt{3} teskarisini topish uchun har birining teskarisini toping.
6-4\sqrt{3}+\sqrt{3}
6 olish uchun 8 dan 2 ni ayirish.
6-3\sqrt{3}
-3\sqrt{3} ni olish uchun -4\sqrt{3} va \sqrt{3} ni birlashtirish.