Baholash
6-2\sqrt{2}\approx 3,171572875
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{2}\right)^{2}-4\sqrt{2}+4+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{2}-2\right)^{2} kengaytirilishi uchun ishlating.
2-4\sqrt{2}+4+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
\sqrt{2} kvadrati – 2.
6-4\sqrt{2}+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
6 olish uchun 2 va 4'ni qo'shing.
6-4\sqrt{2}+\frac{\sqrt{\frac{3+2}{3}}}{\sqrt{\frac{5}{24}}}
3 hosil qilish uchun 1 va 3 ni ko'paytirish.
6-4\sqrt{2}+\frac{\sqrt{\frac{5}{3}}}{\sqrt{\frac{5}{24}}}
5 olish uchun 3 va 2'ni qo'shing.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{5}{24}}}
\sqrt{\frac{5}{3}} boʻlinmasining kvadrat ildizini \frac{\sqrt{5}}{\sqrt{3}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{5}{24}}}
\frac{\sqrt{5}}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{5}{24}}}
\sqrt{3} kvadrati – 3.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{5}{24}}}
\sqrt{5} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{\sqrt{24}}}
\sqrt{\frac{5}{24}} boʻlinmasining kvadrat ildizini \frac{\sqrt{5}}{\sqrt{24}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{2\sqrt{6}}}
Faktor: 24=2^{2}\times 6. \sqrt{2^{2}\times 6} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{6} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}}
\frac{\sqrt{5}}{2\sqrt{6}} maxrajini \sqrt{6} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{2\times 6}}
\sqrt{6} kvadrati – 6.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{2\times 6}}
\sqrt{5} va \sqrt{6} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{12}}
12 hosil qilish uchun 2 va 6 ni ko'paytirish.
6-4\sqrt{2}+\frac{\sqrt{15}\times 12}{3\sqrt{30}}
\frac{\sqrt{15}}{3} ni \frac{\sqrt{30}}{12} ga bo'lish \frac{\sqrt{15}}{3} ga k'paytirish \frac{\sqrt{30}}{12} ga qaytarish.
6-4\sqrt{2}+\frac{4\sqrt{15}}{\sqrt{30}}
Surat va maxrajdagi ikkala 3 ni qisqartiring.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{30}}{\left(\sqrt{30}\right)^{2}}
\frac{4\sqrt{15}}{\sqrt{30}} maxrajini \sqrt{30} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{30}}{30}
\sqrt{30} kvadrati – 30.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{15}\sqrt{2}}{30}
Faktor: 30=15\times 2. \sqrt{15\times 2} koʻpaytmasining kvadrat ildizini \sqrt{15}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
6-4\sqrt{2}+\frac{4\times 15\sqrt{2}}{30}
15 hosil qilish uchun \sqrt{15} va \sqrt{15} ni ko'paytirish.
6-4\sqrt{2}+\frac{60\sqrt{2}}{30}
60 hosil qilish uchun 4 va 15 ni ko'paytirish.
6-4\sqrt{2}+2\sqrt{2}
2\sqrt{2} ni olish uchun 60\sqrt{2} ni 30 ga bo‘ling.
6-2\sqrt{2}
-2\sqrt{2} ni olish uchun -4\sqrt{2} va 2\sqrt{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}