Baholash
-2+2i
Ashyoviy qism
-2
Baham ko'rish
Klipbordga nusxa olish
\left(1+2i\right)i+\left(\frac{1-i}{1+i}\right)^{3}
5 daraja ko‘rsatkichini i ga hisoblang va i ni qiymatni oling.
-2+i+\left(\frac{1-i}{1+i}\right)^{3}
-2+i hosil qilish uchun 1+2i va i ni ko'paytirish.
-2+i+\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3}
\frac{1-i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
-2+i+\left(\frac{-2i}{2}\right)^{3}
\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)} ichidagi ko‘paytirishlarni bajaring.
-2+i+\left(-i\right)^{3}
-i ni olish uchun -2i ni 2 ga bo‘ling.
-2+i+i
3 daraja ko‘rsatkichini -i ga hisoblang va i ni qiymatni oling.
-2+2i
-2+2i olish uchun -2+i va i'ni qo'shing.
Re(\left(1+2i\right)i+\left(\frac{1-i}{1+i}\right)^{3})
5 daraja ko‘rsatkichini i ga hisoblang va i ni qiymatni oling.
Re(-2+i+\left(\frac{1-i}{1+i}\right)^{3})
-2+i hosil qilish uchun 1+2i va i ni ko'paytirish.
Re(-2+i+\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3})
\frac{1-i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
Re(-2+i+\left(\frac{-2i}{2}\right)^{3})
\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)} ichidagi ko‘paytirishlarni bajaring.
Re(-2+i+\left(-i\right)^{3})
-i ni olish uchun -2i ni 2 ga bo‘ling.
Re(-2+i+i)
3 daraja ko‘rsatkichini -i ga hisoblang va i ni qiymatni oling.
Re(-2+2i)
-2+2i olish uchun -2+i va i'ni qo'shing.
-2
-2+2i ning real qismi – -2.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}