x uchun yechish
x=-16
x=7
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
( \frac{ 1 }{ 2 } (2x+2)(x+4))-( \frac{ 1 }{ 2 } (x+1)(x))=60
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\left(x+4\right)-\frac{1}{2}\left(x+1\right)x=60
\frac{1}{2} ga 2x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+5x+4-\frac{1}{2}\left(x+1\right)x=60
x+1 ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+5x+4-\frac{1}{2}\left(x+1\right)x-60=0
Ikkala tarafdan 60 ni ayirish.
x^{2}+5x+4+\left(-\frac{1}{2}x-\frac{1}{2}\right)x-60=0
-\frac{1}{2} ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+5x+4-\frac{1}{2}x^{2}-\frac{1}{2}x-60=0
-\frac{1}{2}x-\frac{1}{2} ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x^{2}+5x+4-\frac{1}{2}x-60=0
\frac{1}{2}x^{2} ni olish uchun x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
\frac{1}{2}x^{2}+\frac{9}{2}x+4-60=0
\frac{9}{2}x ni olish uchun 5x va -\frac{1}{2}x ni birlashtirish.
\frac{1}{2}x^{2}+\frac{9}{2}x-56=0
-56 olish uchun 4 dan 60 ni ayirish.
x=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\times \frac{1}{2}\left(-56\right)}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, \frac{9}{2} ni b va -56 ni c bilan almashtiring.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\times \frac{1}{2}\left(-56\right)}}{2\times \frac{1}{2}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-2\left(-56\right)}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+112}}{2\times \frac{1}{2}}
-2 ni -56 marotabaga ko'paytirish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{529}{4}}}{2\times \frac{1}{2}}
\frac{81}{4} ni 112 ga qo'shish.
x=\frac{-\frac{9}{2}±\frac{23}{2}}{2\times \frac{1}{2}}
\frac{529}{4} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{9}{2}±\frac{23}{2}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{7}{1}
x=\frac{-\frac{9}{2}±\frac{23}{2}}{1} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{2} ni \frac{23}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=7
7 ni 1 ga bo'lish.
x=-\frac{16}{1}
x=\frac{-\frac{9}{2}±\frac{23}{2}}{1} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{23}{2} ni -\frac{9}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-16
-16 ni 1 ga bo'lish.
x=7 x=-16
Tenglama yechildi.
\left(x+1\right)\left(x+4\right)-\frac{1}{2}\left(x+1\right)x=60
\frac{1}{2} ga 2x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+5x+4-\frac{1}{2}\left(x+1\right)x=60
x+1 ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+5x+4+\left(-\frac{1}{2}x-\frac{1}{2}\right)x=60
-\frac{1}{2} ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+5x+4-\frac{1}{2}x^{2}-\frac{1}{2}x=60
-\frac{1}{2}x-\frac{1}{2} ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x^{2}+5x+4-\frac{1}{2}x=60
\frac{1}{2}x^{2} ni olish uchun x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
\frac{1}{2}x^{2}+\frac{9}{2}x+4=60
\frac{9}{2}x ni olish uchun 5x va -\frac{1}{2}x ni birlashtirish.
\frac{1}{2}x^{2}+\frac{9}{2}x=60-4
Ikkala tarafdan 4 ni ayirish.
\frac{1}{2}x^{2}+\frac{9}{2}x=56
56 olish uchun 60 dan 4 ni ayirish.
\frac{\frac{1}{2}x^{2}+\frac{9}{2}x}{\frac{1}{2}}=\frac{56}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\frac{\frac{9}{2}}{\frac{1}{2}}x=\frac{56}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+9x=\frac{56}{\frac{1}{2}}
\frac{9}{2} ni \frac{1}{2} ga bo'lish \frac{9}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+9x=112
56 ni \frac{1}{2} ga bo'lish 56 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=112+\left(\frac{9}{2}\right)^{2}
9 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{2} olish uchun. Keyin, \frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+9x+\frac{81}{4}=112+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x^{2}+9x+\frac{81}{4}=\frac{529}{4}
112 ni \frac{81}{4} ga qo'shish.
\left(x+\frac{9}{2}\right)^{2}=\frac{529}{4}
x^{2}+9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{529}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{2}=\frac{23}{2} x+\frac{9}{2}=-\frac{23}{2}
Qisqartirish.
x=7 x=-16
Tenglamaning ikkala tarafidan \frac{9}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}