Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+1 va x-2 ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right). \frac{x-2}{x+1} ni \frac{x-2}{x-2} marotabaga ko'paytirish. \frac{5-x}{x-2} ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\frac{\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} va \frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{x^{2}-2x-2x+4+5x+5-x^{2}-x}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
x^{2}-2x-2x+4+5x+5-x^{2}-x kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Faktor: x^{2}-x-2. Faktor: x^{2}+3x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-2\right)\left(x+1\right) va \left(x+1\right)\left(x+2\right) ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right)\left(x+2\right). \frac{1}{\left(x-2\right)\left(x+1\right)} ni \frac{x+2}{x+2} marotabaga ko'paytirish. \frac{1}{\left(x+1\right)\left(x+2\right)} ni \frac{x-2}{x-2} marotabaga ko'paytirish.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} va \frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
x+2-\left(x-2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
x+2-x+2 kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Faktor: x^{2}+x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x\left(x+1\right) ning eng kichik umumiy karralisi x\left(x+1\right). \frac{x+1}{x} ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{\left(x+1\right)\left(x+1\right)+3-x^{2}}{x\left(x+1\right)}}
\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} va \frac{3-x^{2}}{x\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}+x+1+x+3-x^{2}}{x\left(x+1\right)}}
\left(x+1\right)\left(x+1\right)+3-x^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{2x+4}{x\left(x+1\right)}}
x^{2}+x+1+x+3-x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} ni \frac{2x+4}{x\left(x+1\right)} ga ko‘paytiring.
\frac{9\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\times 4\left(2x+4\right)}
\frac{9}{\left(x-2\right)\left(x+1\right)} ni \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)} ga bo'lish \frac{9}{\left(x-2\right)\left(x+1\right)} ga k'paytirish \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)} ga qaytarish.
\frac{9x\left(x+1\right)\left(x+2\right)}{4\left(2x+4\right)}
Surat va maxrajdagi ikkala \left(x-2\right)\left(x+1\right) ni qisqartiring.
\frac{9x\left(x+1\right)\left(x+2\right)}{2\times 4\left(x+2\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{9x\left(x+1\right)}{2\times 4}
Surat va maxrajdagi ikkala x+2 ni qisqartiring.
\frac{9x^{2}+9x}{8}
Ifodani kengaytiring.
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+1 va x-2 ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right). \frac{x-2}{x+1} ni \frac{x-2}{x-2} marotabaga ko'paytirish. \frac{5-x}{x-2} ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\frac{\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} va \frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{x^{2}-2x-2x+4+5x+5-x^{2}-x}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
x^{2}-2x-2x+4+5x+5-x^{2}-x kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Faktor: x^{2}-x-2. Faktor: x^{2}+3x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-2\right)\left(x+1\right) va \left(x+1\right)\left(x+2\right) ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right)\left(x+2\right). \frac{1}{\left(x-2\right)\left(x+1\right)} ni \frac{x+2}{x+2} marotabaga ko'paytirish. \frac{1}{\left(x+1\right)\left(x+2\right)} ni \frac{x-2}{x-2} marotabaga ko'paytirish.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} va \frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
x+2-\left(x-2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
x+2-x+2 kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Faktor: x^{2}+x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x\left(x+1\right) ning eng kichik umumiy karralisi x\left(x+1\right). \frac{x+1}{x} ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{\left(x+1\right)\left(x+1\right)+3-x^{2}}{x\left(x+1\right)}}
\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} va \frac{3-x^{2}}{x\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}+x+1+x+3-x^{2}}{x\left(x+1\right)}}
\left(x+1\right)\left(x+1\right)+3-x^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{2x+4}{x\left(x+1\right)}}
x^{2}+x+1+x+3-x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} ni \frac{2x+4}{x\left(x+1\right)} ga ko‘paytiring.
\frac{9\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\times 4\left(2x+4\right)}
\frac{9}{\left(x-2\right)\left(x+1\right)} ni \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)} ga bo'lish \frac{9}{\left(x-2\right)\left(x+1\right)} ga k'paytirish \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)} ga qaytarish.
\frac{9x\left(x+1\right)\left(x+2\right)}{4\left(2x+4\right)}
Surat va maxrajdagi ikkala \left(x-2\right)\left(x+1\right) ni qisqartiring.
\frac{9x\left(x+1\right)\left(x+2\right)}{2\times 4\left(x+2\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{9x\left(x+1\right)}{2\times 4}
Surat va maxrajdagi ikkala x+2 ni qisqartiring.
\frac{9x^{2}+9x}{8}
Ifodani kengaytiring.