x uchun yechish
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{x}{2^{3}}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\left(\frac{x}{8}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
3 daraja ko‘rsatkichini 2 ga hisoblang va 8 ni qiymatni oling.
\frac{x^{2}}{8^{2}}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
\frac{x}{8}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{x^{2}}{8^{2}}-\frac{x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x^{2}\times 3 ni \frac{8^{2}}{8^{2}} marotabaga ko'paytirish.
\frac{x^{2}-x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
\frac{x^{2}}{8^{2}} va \frac{x^{2}\times 3\times 8^{2}}{8^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-192x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-x^{2}\times 3\times 8^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{-191x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-192x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{-191x^{2}}{8^{2}}+15\times \frac{x^{2}}{2^{2}}=x^{2}
\frac{x}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{-191x^{2}}{8^{2}}+\frac{15x^{2}}{2^{2}}=x^{2}
15\times \frac{x^{2}}{2^{2}} ni yagona kasrga aylantiring.
\frac{-191x^{2}}{64}+\frac{16\times 15x^{2}}{64}=x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 8^{2} va 2^{2} ning eng kichik umumiy karralisi 64. \frac{15x^{2}}{2^{2}} ni \frac{16}{16} marotabaga ko'paytirish.
\frac{-191x^{2}+16\times 15x^{2}}{64}=x^{2}
\frac{-191x^{2}}{64} va \frac{16\times 15x^{2}}{64} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{-191x^{2}+240x^{2}}{64}=x^{2}
-191x^{2}+16\times 15x^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{49x^{2}}{64}=x^{2}
-191x^{2}+240x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{49x^{2}}{64}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
49x^{2}-64x^{2}=0
Tenglamaning ikkala tarafini 64 ga ko'paytirish.
-15x^{2}=0
-15x^{2} ni olish uchun 49x^{2} va -64x^{2} ni birlashtirish.
x^{2}=0
Ikki tarafini -15 ga bo‘ling. Nol bo‘lmagan har qanday sonni nolga ko‘paytirsangiz, nol bo‘ladi.
x=0 x=0
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x=0
Tenglama yechildi. Yechimlar bir xil.
\left(\frac{x}{2^{3}}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\left(\frac{x}{8}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
3 daraja ko‘rsatkichini 2 ga hisoblang va 8 ni qiymatni oling.
\frac{x^{2}}{8^{2}}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
\frac{x}{8}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{x^{2}}{8^{2}}-\frac{x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x^{2}\times 3 ni \frac{8^{2}}{8^{2}} marotabaga ko'paytirish.
\frac{x^{2}-x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
\frac{x^{2}}{8^{2}} va \frac{x^{2}\times 3\times 8^{2}}{8^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-192x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-x^{2}\times 3\times 8^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{-191x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-192x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{-191x^{2}}{8^{2}}+15\times \frac{x^{2}}{2^{2}}=x^{2}
\frac{x}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{-191x^{2}}{8^{2}}+\frac{15x^{2}}{2^{2}}=x^{2}
15\times \frac{x^{2}}{2^{2}} ni yagona kasrga aylantiring.
\frac{-191x^{2}}{64}+\frac{16\times 15x^{2}}{64}=x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 8^{2} va 2^{2} ning eng kichik umumiy karralisi 64. \frac{15x^{2}}{2^{2}} ni \frac{16}{16} marotabaga ko'paytirish.
\frac{-191x^{2}+16\times 15x^{2}}{64}=x^{2}
\frac{-191x^{2}}{64} va \frac{16\times 15x^{2}}{64} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{-191x^{2}+240x^{2}}{64}=x^{2}
-191x^{2}+16\times 15x^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{49x^{2}}{64}=x^{2}
-191x^{2}+240x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{49x^{2}}{64}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
49x^{2}-64x^{2}=0
Tenglamaning ikkala tarafini 64 ga ko'paytirish.
-15x^{2}=0
-15x^{2} ni olish uchun 49x^{2} va -64x^{2} ni birlashtirish.
x^{2}=0
Ikki tarafini -15 ga bo‘ling. Nol bo‘lmagan har qanday sonni nolga ko‘paytirsangiz, nol bo‘ladi.
x=\frac{0±\sqrt{0^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va 0 ni c bilan almashtiring.
x=\frac{0±0}{2}
0^{2} ning kvadrat ildizini chiqarish.
x=0
0 ni 2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}