Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Faktor: a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)^{2} ning eng kichik umumiy karralisi \left(B+a\right)^{2}. \frac{a^{2}}{a+B} ni \frac{B+a}{B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} va \frac{a^{3}}{\left(B+a\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}\left(B+a\right)-a^{3} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}B+a^{3}-a^{3} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Faktor: a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)\left(-B+a\right) ning eng kichik umumiy karralisi \left(B+a\right)\left(-B+a\right). \frac{a}{a+B} ni \frac{-B+a}{-B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} va \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
a\left(-B+a\right)-a^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
-aB+a^{2}-a^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
\frac{a^{2}B}{\left(B+a\right)^{2}} ni \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga bo'lish \frac{a^{2}B}{\left(B+a\right)^{2}} ga k'paytirish \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga qaytarish.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Surat va maxrajdagi ikkala Ba\left(B+a\right) ni qisqartiring.
\frac{-aB+a^{2}}{-\left(B+a\right)}
a ga -B+a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-aB+a^{2}}{-B-a}
B+a teskarisini topish uchun har birining teskarisini toping.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Faktor: a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)^{2} ning eng kichik umumiy karralisi \left(B+a\right)^{2}. \frac{a^{2}}{a+B} ni \frac{B+a}{B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} va \frac{a^{3}}{\left(B+a\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}\left(B+a\right)-a^{3} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}B+a^{3}-a^{3} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Faktor: a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)\left(-B+a\right) ning eng kichik umumiy karralisi \left(B+a\right)\left(-B+a\right). \frac{a}{a+B} ni \frac{-B+a}{-B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} va \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
a\left(-B+a\right)-a^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
-aB+a^{2}-a^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
\frac{a^{2}B}{\left(B+a\right)^{2}} ni \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga bo'lish \frac{a^{2}B}{\left(B+a\right)^{2}} ga k'paytirish \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga qaytarish.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Surat va maxrajdagi ikkala Ba\left(B+a\right) ni qisqartiring.
\frac{-aB+a^{2}}{-\left(B+a\right)}
a ga -B+a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-aB+a^{2}}{-B-a}
B+a teskarisini topish uchun har birining teskarisini toping.