Baholash
-\frac{a\left(a-B\right)}{B+a}
Kengaytirish
-\frac{a^{2}-Ba}{B+a}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Faktor: a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)^{2} ning eng kichik umumiy karralisi \left(B+a\right)^{2}. \frac{a^{2}}{a+B} ni \frac{B+a}{B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} va \frac{a^{3}}{\left(B+a\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}\left(B+a\right)-a^{3} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}B+a^{3}-a^{3} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Faktor: a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)\left(-B+a\right) ning eng kichik umumiy karralisi \left(B+a\right)\left(-B+a\right). \frac{a}{a+B} ni \frac{-B+a}{-B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} va \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
a\left(-B+a\right)-a^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
-aB+a^{2}-a^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
\frac{a^{2}B}{\left(B+a\right)^{2}} ni \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga bo'lish \frac{a^{2}B}{\left(B+a\right)^{2}} ga k'paytirish \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga qaytarish.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Surat va maxrajdagi ikkala Ba\left(B+a\right) ni qisqartiring.
\frac{-aB+a^{2}}{-\left(B+a\right)}
a ga -B+a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-aB+a^{2}}{-B-a}
B+a teskarisini topish uchun har birining teskarisini toping.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Faktor: a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)^{2} ning eng kichik umumiy karralisi \left(B+a\right)^{2}. \frac{a^{2}}{a+B} ni \frac{B+a}{B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} va \frac{a^{3}}{\left(B+a\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}\left(B+a\right)-a^{3} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}B+a^{3}-a^{3} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Faktor: a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a+B va \left(B+a\right)\left(-B+a\right) ning eng kichik umumiy karralisi \left(B+a\right)\left(-B+a\right). \frac{a}{a+B} ni \frac{-B+a}{-B+a} marotabaga ko'paytirish.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} va \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
a\left(-B+a\right)-a^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
-aB+a^{2}-a^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
\frac{a^{2}B}{\left(B+a\right)^{2}} ni \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga bo'lish \frac{a^{2}B}{\left(B+a\right)^{2}} ga k'paytirish \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ga qaytarish.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Surat va maxrajdagi ikkala Ba\left(B+a\right) ni qisqartiring.
\frac{-aB+a^{2}}{-\left(B+a\right)}
a ga -B+a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-aB+a^{2}}{-B-a}
B+a teskarisini topish uchun har birining teskarisini toping.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}