Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Faktor: a^{2}-2a. Faktor: 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a\left(a-2\right) va \left(a-2\right)\left(-a-2\right) ning eng kichik umumiy karralisi a\left(a-2\right)\left(-a-2\right). \frac{a+2}{a\left(a-2\right)} ni \frac{-a-2}{-a-2} marotabaga ko'paytirish. \frac{8}{\left(a-2\right)\left(-a-2\right)} ni \frac{a}{a} marotabaga ko'paytirish.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} va \frac{8a}{a\left(a-2\right)\left(-a-2\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
\left(a+2\right)\left(-a-2\right)+8a ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
-a^{2}-2a-2a-4+8a kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
2-a mislodagi manfiy ishorani chiqarib tashlang.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
Surat va maxrajdagi ikkala a-2 ni qisqartiring.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
\frac{-\left(a-2\right)}{a\left(-a-2\right)} ni \frac{a-2}{a} ga bo'lish \frac{-\left(a-2\right)}{a\left(-a-2\right)} ga k'paytirish \frac{a-2}{a} ga qaytarish.
\frac{-1}{-a-2}
Surat va maxrajdagi ikkala a\left(a-2\right) ni qisqartiring.
\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Faktor: a^{2}-2a. Faktor: 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a\left(a-2\right) va \left(a-2\right)\left(-a-2\right) ning eng kichik umumiy karralisi a\left(a-2\right)\left(-a-2\right). \frac{a+2}{a\left(a-2\right)} ni \frac{-a-2}{-a-2} marotabaga ko'paytirish. \frac{8}{\left(a-2\right)\left(-a-2\right)} ni \frac{a}{a} marotabaga ko'paytirish.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} va \frac{8a}{a\left(a-2\right)\left(-a-2\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
\left(a+2\right)\left(-a-2\right)+8a ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
-a^{2}-2a-2a-4+8a kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
2-a mislodagi manfiy ishorani chiqarib tashlang.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
Surat va maxrajdagi ikkala a-2 ni qisqartiring.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
\frac{-\left(a-2\right)}{a\left(-a-2\right)} ni \frac{a-2}{a} ga bo'lish \frac{-\left(a-2\right)}{a\left(-a-2\right)} ga k'paytirish \frac{a-2}{a} ga qaytarish.
\frac{-1}{-a-2}
Surat va maxrajdagi ikkala a\left(a-2\right) ni qisqartiring.