Baholash
3x^{\frac{3}{2}}y^{2}
x ga nisbatan hosilani topish
\frac{9\sqrt{x}y^{2}}{2}
Baham ko'rish
Klipbordga nusxa olish
\left(9x^{3}y^{4}\right)^{\frac{1}{2}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
9^{\frac{1}{2}}\left(x^{3}\right)^{\frac{1}{2}}\left(y^{4}\right)^{\frac{1}{2}}
\left(9x^{3}y^{4}\right)^{\frac{1}{2}} ni kengaytirish.
9^{\frac{1}{2}}x^{\frac{3}{2}}\left(y^{4}\right)^{\frac{1}{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 3 va \frac{1}{2} ni ko‘paytirib, \frac{3}{2} ni oling.
9^{\frac{1}{2}}x^{\frac{3}{2}}y^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 4 va \frac{1}{2} ni ko‘paytirib, 2 ni oling.
3x^{\frac{3}{2}}y^{2}
\frac{1}{2} daraja ko‘rsatkichini 9 ga hisoblang va 3 ni qiymatni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}