Baholash
-\frac{48\left(5k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Kengaytirish
-\frac{48\left(5k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(8k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-4\times \frac{4k^{2}+12}{3+4k^{2}}
\frac{8k^{2}}{3+4k^{2}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(8k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-\frac{4\left(4k^{2}+12\right)}{3+4k^{2}}
4\times \frac{4k^{2}+12}{3+4k^{2}} ni yagona kasrga aylantiring.
\frac{\left(8k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
4 ga 4k^{2}+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(8k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(3+4k^{2}\right)^{2} va 3+4k^{2} ning eng kichik umumiy karralisi \left(4k^{2}+3\right)^{2}. \frac{16k^{2}+48}{3+4k^{2}} ni \frac{4k^{2}+3}{4k^{2}+3} marotabaga ko'paytirish.
\frac{\left(8k^{2}\right)^{2}-\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
\frac{\left(8k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}} va \frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{8^{2}\left(k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
\left(8k^{2}\right)^{2} ni kengaytirish.
\frac{8^{2}k^{4}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{64k^{4}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
\frac{64k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(3+4k^{2}\right)^{2} va 3+4k^{2} ning eng kichik umumiy karralisi \left(4k^{2}+3\right)^{2}. \frac{16k^{2}+48}{3+4k^{2}} ni \frac{4k^{2}+3}{4k^{2}+3} marotabaga ko'paytirish.
\frac{64k^{4}-\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
\frac{64k^{4}}{\left(4k^{2}+3\right)^{2}} va \frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{64k^{4}-64k^{4}-48k^{2}-192k^{2}-144}{\left(4k^{2}+3\right)^{2}}
64k^{4}-\left(16k^{2}+48\right)\left(4k^{2}+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-240k^{2}-144}{\left(4k^{2}+3\right)^{2}}
64k^{4}-64k^{4}-48k^{2}-192k^{2}-144 kabi iboralarga o‘xshab birlashtiring.
\frac{-240k^{2}-144}{16k^{4}+24k^{2}+9}
\left(4k^{2}+3\right)^{2} ni kengaytirish.
\frac{\left(8k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-4\times \frac{4k^{2}+12}{3+4k^{2}}
\frac{8k^{2}}{3+4k^{2}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(8k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-\frac{4\left(4k^{2}+12\right)}{3+4k^{2}}
4\times \frac{4k^{2}+12}{3+4k^{2}} ni yagona kasrga aylantiring.
\frac{\left(8k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
4 ga 4k^{2}+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(8k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(3+4k^{2}\right)^{2} va 3+4k^{2} ning eng kichik umumiy karralisi \left(4k^{2}+3\right)^{2}. \frac{16k^{2}+48}{3+4k^{2}} ni \frac{4k^{2}+3}{4k^{2}+3} marotabaga ko'paytirish.
\frac{\left(8k^{2}\right)^{2}-\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
\frac{\left(8k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}} va \frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{8^{2}\left(k^{2}\right)^{2}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
\left(8k^{2}\right)^{2} ni kengaytirish.
\frac{8^{2}k^{4}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{64k^{4}}{\left(3+4k^{2}\right)^{2}}-\frac{16k^{2}+48}{3+4k^{2}}
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
\frac{64k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(3+4k^{2}\right)^{2} va 3+4k^{2} ning eng kichik umumiy karralisi \left(4k^{2}+3\right)^{2}. \frac{16k^{2}+48}{3+4k^{2}} ni \frac{4k^{2}+3}{4k^{2}+3} marotabaga ko'paytirish.
\frac{64k^{4}-\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
\frac{64k^{4}}{\left(4k^{2}+3\right)^{2}} va \frac{\left(16k^{2}+48\right)\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{64k^{4}-64k^{4}-48k^{2}-192k^{2}-144}{\left(4k^{2}+3\right)^{2}}
64k^{4}-\left(16k^{2}+48\right)\left(4k^{2}+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-240k^{2}-144}{\left(4k^{2}+3\right)^{2}}
64k^{4}-64k^{4}-48k^{2}-192k^{2}-144 kabi iboralarga o‘xshab birlashtiring.
\frac{-240k^{2}-144}{16k^{4}+24k^{2}+9}
\left(4k^{2}+3\right)^{2} ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}