Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{6^{2}}{\left(25+x\right)^{2}}x=32
\frac{6}{25+x}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{6^{2}x}{\left(25+x\right)^{2}}=32
\frac{6^{2}}{\left(25+x\right)^{2}}x ni yagona kasrga aylantiring.
\frac{36x}{\left(25+x\right)^{2}}=32
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
\frac{36x}{625+50x+x^{2}}=32
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(25+x\right)^{2} kengaytirilishi uchun ishlating.
\frac{36x}{625+50x+x^{2}}-32=0
Ikkala tarafdan 32 ni ayirish.
\frac{36x}{\left(x+25\right)^{2}}-32=0
Faktor: 625+50x+x^{2}.
\frac{36x}{\left(x+25\right)^{2}}-\frac{32\left(x+25\right)^{2}}{\left(x+25\right)^{2}}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 32 ni \frac{\left(x+25\right)^{2}}{\left(x+25\right)^{2}} marotabaga ko'paytirish.
\frac{36x-32\left(x+25\right)^{2}}{\left(x+25\right)^{2}}=0
\frac{36x}{\left(x+25\right)^{2}} va \frac{32\left(x+25\right)^{2}}{\left(x+25\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{36x-32x^{2}-1600x-20000}{\left(x+25\right)^{2}}=0
36x-32\left(x+25\right)^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{-1564x-32x^{2}-20000}{\left(x+25\right)^{2}}=0
36x-32x^{2}-1600x-20000 kabi iboralarga o‘xshab birlashtiring.
-1564x-32x^{2}-20000=0
x qiymati -25 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+25\right)^{2} ga ko'paytirish.
-32x^{2}-1564x-20000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1564\right)±\sqrt{\left(-1564\right)^{2}-4\left(-32\right)\left(-20000\right)}}{2\left(-32\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -32 ni a, -1564 ni b va -20000 ni c bilan almashtiring.
x=\frac{-\left(-1564\right)±\sqrt{2446096-4\left(-32\right)\left(-20000\right)}}{2\left(-32\right)}
-1564 kvadratini chiqarish.
x=\frac{-\left(-1564\right)±\sqrt{2446096+128\left(-20000\right)}}{2\left(-32\right)}
-4 ni -32 marotabaga ko'paytirish.
x=\frac{-\left(-1564\right)±\sqrt{2446096-2560000}}{2\left(-32\right)}
128 ni -20000 marotabaga ko'paytirish.
x=\frac{-\left(-1564\right)±\sqrt{-113904}}{2\left(-32\right)}
2446096 ni -2560000 ga qo'shish.
x=\frac{-\left(-1564\right)±12\sqrt{791}i}{2\left(-32\right)}
-113904 ning kvadrat ildizini chiqarish.
x=\frac{1564±12\sqrt{791}i}{2\left(-32\right)}
-1564 ning teskarisi 1564 ga teng.
x=\frac{1564±12\sqrt{791}i}{-64}
2 ni -32 marotabaga ko'paytirish.
x=\frac{1564+12\sqrt{791}i}{-64}
x=\frac{1564±12\sqrt{791}i}{-64} tenglamasini yeching, bunda ± musbat. 1564 ni 12i\sqrt{791} ga qo'shish.
x=\frac{-3\sqrt{791}i-391}{16}
1564+12i\sqrt{791} ni -64 ga bo'lish.
x=\frac{-12\sqrt{791}i+1564}{-64}
x=\frac{1564±12\sqrt{791}i}{-64} tenglamasini yeching, bunda ± manfiy. 1564 dan 12i\sqrt{791} ni ayirish.
x=\frac{-391+3\sqrt{791}i}{16}
1564-12i\sqrt{791} ni -64 ga bo'lish.
x=\frac{-3\sqrt{791}i-391}{16} x=\frac{-391+3\sqrt{791}i}{16}
Tenglama yechildi.
\frac{6^{2}}{\left(25+x\right)^{2}}x=32
\frac{6}{25+x}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{6^{2}x}{\left(25+x\right)^{2}}=32
\frac{6^{2}}{\left(25+x\right)^{2}}x ni yagona kasrga aylantiring.
\frac{36x}{\left(25+x\right)^{2}}=32
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
\frac{36x}{625+50x+x^{2}}=32
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(25+x\right)^{2} kengaytirilishi uchun ishlating.
36x=32\left(x+25\right)^{2}
x qiymati -25 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+25\right)^{2} ga ko'paytirish.
36x=32\left(x^{2}+50x+625\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+25\right)^{2} kengaytirilishi uchun ishlating.
36x=32x^{2}+1600x+20000
32 ga x^{2}+50x+625 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x-32x^{2}=1600x+20000
Ikkala tarafdan 32x^{2} ni ayirish.
36x-32x^{2}-1600x=20000
Ikkala tarafdan 1600x ni ayirish.
-1564x-32x^{2}=20000
-1564x ni olish uchun 36x va -1600x ni birlashtirish.
-32x^{2}-1564x=20000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-32x^{2}-1564x}{-32}=\frac{20000}{-32}
Ikki tarafini -32 ga bo‘ling.
x^{2}+\left(-\frac{1564}{-32}\right)x=\frac{20000}{-32}
-32 ga bo'lish -32 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{391}{8}x=\frac{20000}{-32}
\frac{-1564}{-32} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{391}{8}x=-625
20000 ni -32 ga bo'lish.
x^{2}+\frac{391}{8}x+\left(\frac{391}{16}\right)^{2}=-625+\left(\frac{391}{16}\right)^{2}
\frac{391}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{391}{16} olish uchun. Keyin, \frac{391}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{391}{8}x+\frac{152881}{256}=-625+\frac{152881}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{391}{16} kvadratini chiqarish.
x^{2}+\frac{391}{8}x+\frac{152881}{256}=-\frac{7119}{256}
-625 ni \frac{152881}{256} ga qo'shish.
\left(x+\frac{391}{16}\right)^{2}=-\frac{7119}{256}
x^{2}+\frac{391}{8}x+\frac{152881}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{391}{16}\right)^{2}}=\sqrt{-\frac{7119}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{391}{16}=\frac{3\sqrt{791}i}{16} x+\frac{391}{16}=-\frac{3\sqrt{791}i}{16}
Qisqartirish.
x=\frac{-391+3\sqrt{791}i}{16} x=\frac{-3\sqrt{791}i-391}{16}
Tenglamaning ikkala tarafidan \frac{391}{16} ni ayirish.