Baholash
-\frac{491}{225}\approx -2,182222222
Omil
-\frac{491}{225} = -2\frac{41}{225} = -2,1822222222222223
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{4}{9}\right)^{1}+\sqrt[3]{-27}+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
1 ni olish uchun 2 ni 2 ga bo‘ling.
\frac{4}{9}+\sqrt[3]{-27}+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
1 daraja ko‘rsatkichini \frac{4}{9} ga hisoblang va \frac{4}{9} ni qiymatni oling.
\frac{4}{9}-3+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
\sqrt[3]{-27} ni hisoblab, -3 natijasiga ega bo‘ling.
-\frac{23}{9}+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
-\frac{23}{9} olish uchun \frac{4}{9} dan 3 ni ayirish.
-\frac{23}{9}+\frac{1}{25}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
2 daraja ko‘rsatkichini \frac{1}{5} ga hisoblang va \frac{1}{25} ni qiymatni oling.
-\frac{566}{225}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
-\frac{566}{225} olish uchun -\frac{23}{9} va \frac{1}{25}'ni qo'shing.
-\frac{566}{225}-\frac{2}{3}+\left(\frac{3}{5}\right)^{0}
\sqrt[3]{-\frac{8}{27}} ni hisoblab, -\frac{2}{3} natijasiga ega bo‘ling.
-\frac{716}{225}+\left(\frac{3}{5}\right)^{0}
-\frac{716}{225} olish uchun -\frac{566}{225} dan \frac{2}{3} ni ayirish.
-\frac{716}{225}+1
0 daraja ko‘rsatkichini \frac{3}{5} ga hisoblang va 1 ni qiymatni oling.
-\frac{491}{225}
-\frac{491}{225} olish uchun -\frac{716}{225} va 1'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}