Baholash
\frac{1}{9}\approx 0,111111111
Omil
\frac{1}{3 ^ {2}} = 0,1111111111111111
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{2}\times \frac{2}{9}-\frac{2}{3}\times \frac{1}{3}
\frac{3}{2} ni \frac{9}{2} ga bo'lish \frac{3}{2} ga k'paytirish \frac{9}{2} ga qaytarish.
\frac{3\times 2}{2\times 9}-\frac{2}{3}\times \frac{1}{3}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{3}{2} ni \frac{2}{9} ga ko‘paytiring.
\frac{3}{9}-\frac{2}{3}\times \frac{1}{3}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{1}{3}-\frac{2}{3}\times \frac{1}{3}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{3}+\frac{-2}{3\times 3}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{2}{3} ni \frac{1}{3} ga ko‘paytiring.
\frac{1}{3}+\frac{-2}{9}
\frac{-2}{3\times 3} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{3}-\frac{2}{9}
\frac{-2}{9} kasri manfiy belgini olib tashlash bilan -\frac{2}{9} sifatida qayta yozilishi mumkin.
\frac{3}{9}-\frac{2}{9}
3 va 9 ning eng kichik umumiy karralisi 9 ga teng. \frac{1}{3} va \frac{2}{9} ni 9 maxraj bilan kasrlarga aylantirib oling.
\frac{3-2}{9}
\frac{3}{9} va \frac{2}{9} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{9}
1 olish uchun 3 dan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}