Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x-3 va 2x+3 ning eng kichik umumiy karralisi \left(2x-3\right)\left(2x+3\right). \frac{2x+3}{2x-3} ni \frac{2x+3}{2x+3} marotabaga ko'paytirish. \frac{2x-3}{2x+3} ni \frac{2x-3}{2x-3} marotabaga ko'paytirish.
\frac{\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} va \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{24x}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
4x^{2}+6x+6x+9-4x^{2}+6x+6x-9 kabi iboralarga o‘xshab birlashtiring.
\frac{24x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)\times 24}
\frac{24x}{\left(2x-3\right)\left(2x+3\right)} ni \frac{24}{4x^{2}-9} ga bo'lish \frac{24x}{\left(2x-3\right)\left(2x+3\right)} ga k'paytirish \frac{24}{4x^{2}-9} ga qaytarish.
\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)}
Surat va maxrajdagi ikkala 24 ni qisqartiring.
\frac{x\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}
Hali faktorlanmagan ifodalarni faktorlang.
x
Surat va maxrajdagi ikkala \left(2x-3\right)\left(2x+3\right) ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x-3 va 2x+3 ning eng kichik umumiy karralisi \left(2x-3\right)\left(2x+3\right). \frac{2x+3}{2x-3} ni \frac{2x+3}{2x+3} marotabaga ko'paytirish. \frac{2x-3}{2x+3} ni \frac{2x-3}{2x-3} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} va \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{24x}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
4x^{2}+6x+6x+9-4x^{2}+6x+6x-9 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)\times 24})
\frac{24x}{\left(2x-3\right)\left(2x+3\right)} ni \frac{24}{4x^{2}-9} ga bo'lish \frac{24x}{\left(2x-3\right)\left(2x+3\right)} ga k'paytirish \frac{24}{4x^{2}-9} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)})
Surat va maxrajdagi ikkala 24 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)})
\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Surat va maxrajdagi ikkala \left(2x-3\right)\left(2x+3\right) ni qisqartiring.
x^{1-1}
ax^{n} hosilasi – nax^{n-1}.
x^{0}
1 dan 1 ni ayirish.
1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.