Baholash
\frac{b}{2\left(3b-2a\right)}
Kengaytirish
\frac{b}{2\left(3b-2a\right)}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)}+\frac{b}{3b-2a}}{1-\frac{2a-3b}{2a+3b}}
Faktor: 4a^{2}-9b^{2}.
\frac{\frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)}+\frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(2a-3b\right)\left(2a+3b\right) va 3b-2a ning eng kichik umumiy karralisi \left(-2a-3b\right)\left(2a-3b\right). \frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)} ni \frac{-1}{-1} marotabaga ko'paytirish. \frac{b}{3b-2a} ni \frac{-\left(-2a-3b\right)}{-\left(-2a-3b\right)} marotabaga ko'paytirish.
\frac{\frac{-2ab+b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
\frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)} va \frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-2ab+2ba+3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
-2ab+b\left(-1\right)\left(-2a-3b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
-2ab+2ba+3b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b}{2a+3b}-\frac{2a-3b}{2a+3b}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2a+3b}{2a+3b} marotabaga ko'paytirish.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-\left(2a-3b\right)}{2a+3b}}
\frac{2a+3b}{2a+3b} va \frac{2a-3b}{2a+3b} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-2a+3b}{2a+3b}}
2a+3b-\left(2a-3b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{6b}{2a+3b}}
2a+3b-2a+3b kabi iboralarga o‘xshab birlashtiring.
\frac{3b^{2}\left(2a+3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)\times 6b}
\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} ni \frac{6b}{2a+3b} ga bo'lish \frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} ga k'paytirish \frac{6b}{2a+3b} ga qaytarish.
\frac{-3\left(-2a-3b\right)b^{2}}{6b\left(-2a-3b\right)\left(2a-3b\right)}
2a+3b mislodagi manfiy ishorani chiqarib tashlang.
\frac{-b}{2\left(2a-3b\right)}
Surat va maxrajdagi ikkala 3b\left(-2a-3b\right) ni qisqartiring.
\frac{b}{-2\left(2a-3b\right)}
Surat va maxrajdagi ikkala -1 ni qisqartiring.
\frac{b}{-4a+6b}
-2 ga 2a-3b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)}+\frac{b}{3b-2a}}{1-\frac{2a-3b}{2a+3b}}
Faktor: 4a^{2}-9b^{2}.
\frac{\frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)}+\frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(2a-3b\right)\left(2a+3b\right) va 3b-2a ning eng kichik umumiy karralisi \left(-2a-3b\right)\left(2a-3b\right). \frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)} ni \frac{-1}{-1} marotabaga ko'paytirish. \frac{b}{3b-2a} ni \frac{-\left(-2a-3b\right)}{-\left(-2a-3b\right)} marotabaga ko'paytirish.
\frac{\frac{-2ab+b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
\frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)} va \frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-2ab+2ba+3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
-2ab+b\left(-1\right)\left(-2a-3b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
-2ab+2ba+3b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b}{2a+3b}-\frac{2a-3b}{2a+3b}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2a+3b}{2a+3b} marotabaga ko'paytirish.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-\left(2a-3b\right)}{2a+3b}}
\frac{2a+3b}{2a+3b} va \frac{2a-3b}{2a+3b} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-2a+3b}{2a+3b}}
2a+3b-\left(2a-3b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{6b}{2a+3b}}
2a+3b-2a+3b kabi iboralarga o‘xshab birlashtiring.
\frac{3b^{2}\left(2a+3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)\times 6b}
\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} ni \frac{6b}{2a+3b} ga bo'lish \frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} ga k'paytirish \frac{6b}{2a+3b} ga qaytarish.
\frac{-3\left(-2a-3b\right)b^{2}}{6b\left(-2a-3b\right)\left(2a-3b\right)}
2a+3b mislodagi manfiy ishorani chiqarib tashlang.
\frac{-b}{2\left(2a-3b\right)}
Surat va maxrajdagi ikkala 3b\left(-2a-3b\right) ni qisqartiring.
\frac{b}{-2\left(2a-3b\right)}
Surat va maxrajdagi ikkala -1 ni qisqartiring.
\frac{b}{-4a+6b}
-2 ga 2a-3b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}