Baholash
\frac{14}{3}\approx 4,666666667
Omil
\frac{2 \cdot 7}{3} = 4\frac{2}{3} = 4,666666666666667
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{10\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\frac{10}{\sqrt{5}} maxrajini \sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{10\sqrt{5}}{5}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\sqrt{5} kvadrati – 5.
\left(2\sqrt{5}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
2\sqrt{5} ni olish uchun 10\sqrt{5} ni 5 ga bo‘ling.
\left(2\sqrt{5}-\frac{5\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\frac{5}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(2\sqrt{5}-\frac{5\sqrt{3}}{3}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\sqrt{3} kvadrati – 3.
\left(\frac{3\times 2\sqrt{5}}{3}-\frac{5\sqrt{3}}{3}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2\sqrt{5} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{3\times 2\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\frac{3\times 2\sqrt{5}}{3} va \frac{5\sqrt{3}}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
3\times 2\sqrt{5}-5\sqrt{3} ichidagi ko‘paytirishlarni bajaring.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{5}}\right)
\frac{2}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4}{\sqrt{5}}\right)
\sqrt{3} kvadrati – 3.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)
\frac{4}{\sqrt{5}} maxrajini \sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4\sqrt{5}}{5}\right)
\sqrt{5} kvadrati – 5.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{5\times 2\sqrt{3}}{15}+\frac{3\times 4\sqrt{5}}{15}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 5 ning eng kichik umumiy karralisi 15. \frac{2\sqrt{3}}{3} ni \frac{5}{5} marotabaga ko'paytirish. \frac{4\sqrt{5}}{5} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\times \frac{5\times 2\sqrt{3}+3\times 4\sqrt{5}}{15}
\frac{5\times 2\sqrt{3}}{15} va \frac{3\times 4\sqrt{5}}{15} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\times \frac{10\sqrt{3}+12\sqrt{5}}{15}
5\times 2\sqrt{3}+3\times 4\sqrt{5} ichidagi ko‘paytirishlarni bajaring.
\frac{\left(6\sqrt{5}-5\sqrt{3}\right)\left(10\sqrt{3}+12\sqrt{5}\right)}{3\times 15}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{6\sqrt{5}-5\sqrt{3}}{3} ni \frac{10\sqrt{3}+12\sqrt{5}}{15} ga ko‘paytiring.
\frac{\left(6\sqrt{5}-5\sqrt{3}\right)\left(10\sqrt{3}+12\sqrt{5}\right)}{45}
45 hosil qilish uchun 3 va 15 ni ko'paytirish.
\frac{60\sqrt{3}\sqrt{5}+72\left(\sqrt{5}\right)^{2}-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
6\sqrt{5}-5\sqrt{3} ifodaning har bir elementini 10\sqrt{3}+12\sqrt{5} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{60\sqrt{15}+72\left(\sqrt{5}\right)^{2}-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
\sqrt{3} va \sqrt{5} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{60\sqrt{15}+72\times 5-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
\sqrt{5} kvadrati – 5.
\frac{60\sqrt{15}+360-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
360 hosil qilish uchun 72 va 5 ni ko'paytirish.
\frac{60\sqrt{15}+360-50\times 3-60\sqrt{3}\sqrt{5}}{45}
\sqrt{3} kvadrati – 3.
\frac{60\sqrt{15}+360-150-60\sqrt{3}\sqrt{5}}{45}
-150 hosil qilish uchun -50 va 3 ni ko'paytirish.
\frac{60\sqrt{15}+210-60\sqrt{3}\sqrt{5}}{45}
210 olish uchun 360 dan 150 ni ayirish.
\frac{60\sqrt{15}+210-60\sqrt{15}}{45}
\sqrt{3} va \sqrt{5} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{210}{45}
0 ni olish uchun 60\sqrt{15} va -60\sqrt{15} ni birlashtirish.
\frac{14}{3}
\frac{210}{45} ulushini 15 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}