Asosiy tarkibga oʻtish
Baholash
Tick mark Image
z ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\frac{1}{z}\right)^{2}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
z^{-2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
\frac{1}{z^{2}}
-1 ni 2 marotabaga ko'paytirish.
\left(\frac{1}{z^{1}}\right)^{2}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{1^{2}}{\left(z^{1}\right)^{2}}
Ikki aqam koeffitsientini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring, so'ngra bo'ling.
\frac{1}{z^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
2\times \left(\frac{1}{z}\right)^{2-1}\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{z})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
2\times \left(\frac{1}{z}\right)^{1}\left(-1\right)z^{-1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-2z^{-2}\times \left(\frac{1}{z}\right)^{1}
Qisqartirish.
-2z^{-2}\times \frac{1}{z}
Har qanday t sharti uchun t^{1}=t.