Baholash
\frac{3n}{m+n}
Kengaytirish
\frac{3n}{m+n}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. m-n va m+n ning eng kichik umumiy karralisi \left(m+n\right)\left(m-n\right). \frac{1}{m-n} ni \frac{m+n}{m+n} marotabaga ko'paytirish. \frac{1}{m+n} ni \frac{m-n}{m-n} marotabaga ko'paytirish.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
\frac{m+n}{\left(m+n\right)\left(m-n\right)} va \frac{m-n}{\left(m+n\right)\left(m-n\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-\left(m-n\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-m+n kabi iboralarga o‘xshab birlashtiring.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
\frac{2n}{\left(m+n\right)\left(m-n\right)} ni \frac{2}{3m-3n} ga bo'lish \frac{2n}{\left(m+n\right)\left(m-n\right)} ga k'paytirish \frac{2}{3m-3n} ga qaytarish.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{3n}{m+n}
Surat va maxrajdagi ikkala m-n ni qisqartiring.
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. m-n va m+n ning eng kichik umumiy karralisi \left(m+n\right)\left(m-n\right). \frac{1}{m-n} ni \frac{m+n}{m+n} marotabaga ko'paytirish. \frac{1}{m+n} ni \frac{m-n}{m-n} marotabaga ko'paytirish.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
\frac{m+n}{\left(m+n\right)\left(m-n\right)} va \frac{m-n}{\left(m+n\right)\left(m-n\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-\left(m-n\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-m+n kabi iboralarga o‘xshab birlashtiring.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
\frac{2n}{\left(m+n\right)\left(m-n\right)} ni \frac{2}{3m-3n} ga bo'lish \frac{2n}{\left(m+n\right)\left(m-n\right)} ga k'paytirish \frac{2}{3m-3n} ga qaytarish.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{3n}{m+n}
Surat va maxrajdagi ikkala m-n ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}