Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{1}{2}-x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
1 ni \frac{5}{5} kasrga o‘giring.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{5}{5} va \frac{1}{5} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
4 olish uchun 5 dan 1 ni ayirish.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2}{7} ni \frac{4}{5} ga ko‘paytiring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{2\times 4}{7\times 5} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
1 ni \frac{5}{5} kasrga o‘giring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
\frac{5}{5} va \frac{3}{5} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
2 olish uchun 5 dan 3 ni ayirish.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
1 ni \frac{5}{5} kasrga o‘giring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
\frac{5}{5} va \frac{2}{5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
7 olish uchun 5 va 2'ni qo'shing.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
\frac{2}{5} ni \frac{7}{5} ga bo'lish \frac{2}{5} ga k'paytirish \frac{7}{5} ga qaytarish.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2}{5} ni \frac{5}{7} ga ko‘paytiring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
Surat va maxrajdagi ikkala 5 ni qisqartiring.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
\frac{8}{35} ni \frac{2}{7} ga bo'lish \frac{8}{35} ga k'paytirish \frac{2}{7} ga qaytarish.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{8}{35} ni \frac{7}{2} ga ko‘paytiring.
\frac{1}{2}x-x^{2}=\frac{56}{70}
\frac{8\times 7}{35\times 2} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x-x^{2}=\frac{4}{5}
\frac{56}{70} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}x-x^{2}-\frac{4}{5}=0
Ikkala tarafdan \frac{4}{5} ni ayirish.
-x^{2}+\frac{1}{2}x-\frac{4}{5}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, \frac{1}{2} ni b va -\frac{4}{5} ni c bilan almashtiring.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{16}{5}}}{2\left(-1\right)}
4 ni -\frac{4}{5} marotabaga ko'paytirish.
x=\frac{-\frac{1}{2}±\sqrt{-\frac{59}{20}}}{2\left(-1\right)}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni -\frac{16}{5} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{2\left(-1\right)}
-\frac{59}{20} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} tenglamasini yeching, bunda ± musbat. -\frac{1}{2} ni \frac{i\sqrt{295}}{10} ga qo'shish.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
-\frac{1}{2}+\frac{i\sqrt{295}}{10} ni -2 ga bo'lish.
x=\frac{-\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} tenglamasini yeching, bunda ± manfiy. -\frac{1}{2} dan \frac{i\sqrt{295}}{10} ni ayirish.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
-\frac{1}{2}-\frac{i\sqrt{295}}{10} ni -2 ga bo'lish.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4} x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
Tenglama yechildi.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{1}{2}-x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
1 ni \frac{5}{5} kasrga o‘giring.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{5}{5} va \frac{1}{5} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
4 olish uchun 5 dan 1 ni ayirish.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2}{7} ni \frac{4}{5} ga ko‘paytiring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{2\times 4}{7\times 5} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
1 ni \frac{5}{5} kasrga o‘giring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
\frac{5}{5} va \frac{3}{5} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
2 olish uchun 5 dan 3 ni ayirish.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
1 ni \frac{5}{5} kasrga o‘giring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
\frac{5}{5} va \frac{2}{5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
7 olish uchun 5 va 2'ni qo'shing.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
\frac{2}{5} ni \frac{7}{5} ga bo'lish \frac{2}{5} ga k'paytirish \frac{7}{5} ga qaytarish.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2}{5} ni \frac{5}{7} ga ko‘paytiring.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
Surat va maxrajdagi ikkala 5 ni qisqartiring.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
\frac{8}{35} ni \frac{2}{7} ga bo'lish \frac{8}{35} ga k'paytirish \frac{2}{7} ga qaytarish.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{8}{35} ni \frac{7}{2} ga ko‘paytiring.
\frac{1}{2}x-x^{2}=\frac{56}{70}
\frac{8\times 7}{35\times 2} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x-x^{2}=\frac{4}{5}
\frac{56}{70} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-x^{2}+\frac{1}{2}x=\frac{4}{5}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+\frac{1}{2}x}{-1}=\frac{\frac{4}{5}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{\frac{1}{2}}{-1}x=\frac{\frac{4}{5}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=\frac{\frac{4}{5}}{-1}
\frac{1}{2} ni -1 ga bo'lish.
x^{2}-\frac{1}{2}x=-\frac{4}{5}
\frac{4}{5} ni -1 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{4}{5}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{4}{5}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{59}{80}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{5} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=-\frac{59}{80}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{59}{80}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{295}i}{20} x-\frac{1}{4}=-\frac{\sqrt{295}i}{20}
Qisqartirish.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4} x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.