Baholash
\frac{8}{3}\approx 2,666666667
Omil
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2,6666666666666665
Baham ko'rish
Klipbordga nusxa olish
8\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{2}\times \frac{2}{3}\times \frac{1}{2}
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
8\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{2}{3}\times \frac{1}{2}
\sqrt{2} kvadrati – 2.
\frac{8\times 2}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{1}{2}
8\times \frac{2}{3} ni yagona kasrga aylantiring.
\frac{16}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{1}{2}
16 hosil qilish uchun 8 va 2 ni ko'paytirish.
\frac{16\times 1}{3\times 2}\times \frac{\sqrt{2}}{2}\sqrt{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{16}{3} ni \frac{1}{2} ga ko‘paytiring.
\frac{16}{6}\times \frac{\sqrt{2}}{2}\sqrt{2}
\frac{16\times 1}{3\times 2} kasridagi ko‘paytirishlarni bajaring.
\frac{8}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}
\frac{16}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{8\sqrt{2}}{3\times 2}\sqrt{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{8}{3} ni \frac{\sqrt{2}}{2} ga ko‘paytiring.
\frac{4\sqrt{2}}{3}\sqrt{2}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{4\sqrt{2}\sqrt{2}}{3}
\frac{4\sqrt{2}}{3}\sqrt{2} ni yagona kasrga aylantiring.
\frac{4\times 2}{3}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
\frac{8}{3}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}