Baholash
\sqrt{5}\approx 2,236067977
Kengaytirish
\sqrt{5} = 2,236067977
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
\frac{\sqrt{5}+1}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
\frac{\sqrt{5}-1}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{5}-1\right)^{2} kengaytirilishi uchun ishlating.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
\sqrt{5} kvadrati – 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
6 olish uchun 5 va 1'ni qo'shing.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2^{2} ni kengaytirish.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
\frac{\left(\sqrt{5}+1\right)^{2}}{4} va \frac{6-2\sqrt{5}}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{4\sqrt{5}}{4}
\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5} hisob-kitobini qiling.
\sqrt{5}
4 va 4 ni qisqartiring.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
\frac{\sqrt{5}+1}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
\frac{\sqrt{5}-1}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{5}-1\right)^{2} kengaytirilishi uchun ishlating.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
\sqrt{5} kvadrati – 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
6 olish uchun 5 va 1'ni qo'shing.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2^{2} ni kengaytirish.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
\frac{\left(\sqrt{5}+1\right)^{2}}{4} va \frac{6-2\sqrt{5}}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{4\sqrt{5}}{4}
\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5} hisob-kitobini qiling.
\sqrt{5}
4 va 4 ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}