Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
\frac{\sqrt{3}+1}{\sqrt{3}-1} maxrajini \sqrt{3}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Hisoblang: \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
\sqrt{3} kvadratini chiqarish. 1 kvadratini chiqarish.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 olish uchun 3 dan 1 ni ayirish.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} hosil qilish uchun \sqrt{3}+1 va \sqrt{3}+1 ni ko'paytirish.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+1\right)^{2} kengaytirilishi uchun ishlating.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} kvadrati – 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 olish uchun 3 va 1'ni qo'shing.
\left(2+\sqrt{3}\right)^{2}
2+\sqrt{3} natijani olish uchun 4+2\sqrt{3} ning har bir ifodasini 2 ga bo‘ling.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
4+4\sqrt{3}+3
\sqrt{3} kvadrati – 3.
7+4\sqrt{3}
7 olish uchun 4 va 3'ni qo'shing.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
\frac{\sqrt{3}+1}{\sqrt{3}-1} maxrajini \sqrt{3}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Hisoblang: \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
\sqrt{3} kvadratini chiqarish. 1 kvadratini chiqarish.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 olish uchun 3 dan 1 ni ayirish.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} hosil qilish uchun \sqrt{3}+1 va \sqrt{3}+1 ni ko'paytirish.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+1\right)^{2} kengaytirilishi uchun ishlating.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} kvadrati – 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 olish uchun 3 va 1'ni qo'shing.
\left(2+\sqrt{3}\right)^{2}
2+\sqrt{3} natijani olish uchun 4+2\sqrt{3} ning har bir ifodasini 2 ga bo‘ling.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
4+4\sqrt{3}+3
\sqrt{3} kvadrati – 3.
7+4\sqrt{3}
7 olish uchun 4 va 3'ni qo'shing.